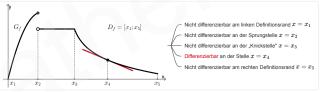
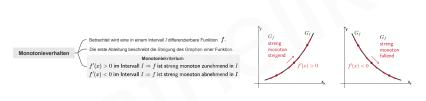
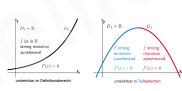
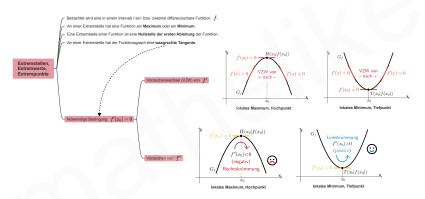

Differentialrechnung

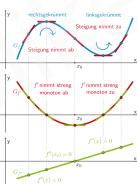


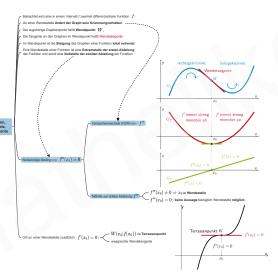


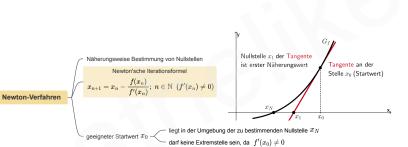
		Term der Funktion	Term der Ableitungsfunktion			
	Konstante Funktion	c	0			
	Potenzfunktion	x"	r · x'-1			
	Wurzelfunktion	\sqrt{x}	$\frac{1}{2\sqrt{x}}$	Summenregel	Term der Funktion $u(x) + v(x)$	Term der Ableitungsfunkt $u'(x) + v'(x)$
	Sinusfunktion	sin x	cos.x	Faktorregel	$k \cdot u(x)$	$k \cdot u'(x)$
Ableitungen / Ableitungsregeln	Kosinusfunktion	cos x	-sin x	Produktregel	$u(x) \cdot v(x)$	$u'(x) \cdot v(x) + u(x) \cdot v'(x)$
	Natürliche Exponentialfunktion	e ^x	e ^x	Quotientenregel	$\frac{u(x)}{v(x)}$	$\frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$
	Exponentialfunktion	a^x	$a^x \cdot \ln a$	Kettenregel	u(v(x))	$u'(v(x)) \cdot v'(x)$
	Natürliche Logarithmusfunktion	ln x	$\frac{1}{x}$	Kettenregei	u(v(x))	u(v(x)) · v(x)
	Logarithmusfunktion	$\log_a x$	$\frac{1}{x \cdot \ln a}$			




Differenzierbarkeit







Die Aufgabenstellung nennt den **Ansatz für den** zu bestimmenden **Funktionsterm**, z.B. "ganzrationale Funktion vom Grad 3".

Die Aufgabenstellung nennt Eigenschaften des Funktionsgraphen wie z.B. Graphenpunkte, Extrempunkte, Steigung des Graphen an einer Stelle usw.

Aus den Eigenschaften lassen sich mithilfe des Funktionsansatzes und dessen Ableitung(en) Gleichungen formulieren.

Die Gleichungen ergeben ein zu lösendes Gleichungssystem.

Funktionsbestimmungen

Eigenschaft(en)	Gleichung(en)			
Der Graph der Funktion f	f(x)	f'(x)	f"(x)	
 schneidet die x-Achse an der Stelle x₀ (Nullstelle). 	$f(x_0) = 0$			
berührt die x-Achse an der Stelle x ₀ .	$f(x_0) = 0$	$f'(x_0) = 0$		
 schneidet die y-Achse an der Stelle y₀. 	$f(0) = y_0$			
- verläuft durch den Punkt $P(x_0 y_0)$	$f(x_0) = y_0$			
 hat einen Hochpunkt/Tiefpunkt an der Stelle x₀. 		$f'(x_0) = 0$		
 hat an der Stelle x₀ die Steigung m. 		$f'(x_0) = m$		
 hat einen Wendepunkt an der Stelle x₀. 			$f''(x_0) = 0$	
- hat an der Stelle x_0 die größte Steigung/das größte Gefälle.			$f''(x_0) = 0$	
• hat den Wendepunkt $W(x_0 y_0)$.	$f(x_0) = y_0$		$f''(x_0) = 0$	
- hat den Terrassenpunkt $P(x_0 \mid y_0)$	$f(x_0) = y_0$	$f'(x_0) = 0$	$f''(x_0) = 0$	
- berührt den Graphen der Funktion g an der Stelle x_0 .	$f(x_0) = g(x_0)$	$f'(x_0) = g'(x_0)$		
- Die Tangente im Punkt $P(x_0 y_0)$ hat die Steigung m .	$f(x_0) = y_0$	$f'(x_0) = m$		
• Die Tangente im Wendepunkt $W(x_0 y_0)$ hat die Steigung m .	$f(x_0) = y_0$	$f'(x_0) = m$	$f''(x_0) = 0$	