

$$
\begin{aligned}
& f(x)=\frac{p(x)}{q(x)} \stackrel{\text { Polynomdivision }}{\Longleftrightarrow} g(x)+r(x) \text { mit } \lim _{x \rightarrow \pm \infty} r(x)=0 \\
& \text { Gegeben in der Form } g(x)+r(x) \\
& \text { Konstanter oder linearer Term } g(x) \\
& \text { Gebrochenrationaler Term (Rest) } r(x) \\
& \text { Günstig für Grenzwertbetrachtungen } x \rightarrow-\infty \text { bzw. } x \rightarrow+\infty \\
& \text { Darstellungsformen } \\
& \text { Günstiger Ansatz für Funktionsbestimmungen, wenn } \\
& \text { Beispiele }\left\{\begin{array}{l}
f(x)=\frac{4(2 x-1)}{4 x-3} \Leftrightarrow 2+\frac{2}{4 x-3} \\
r(x)=\frac{2}{4 x-3} \\
\lim _{x \rightarrow \pm \infty} f(x)= \\
h(x)=\frac{-x^{2}+3 x+2}{x-2} \Leftrightarrow-x+1+\frac{4}{x-2}
\end{array}\right. \\
& \text { - Polynomdivision wird nicht erwartet } \\
& \text { Gu } \\
& \begin{array}{l}
g(x)=-x+1 \\
r(x)=\frac{4}{x-2}
\end{array} \\
& \lim _{x \rightarrow \pm \infty} h(x)=\lim _{x \rightarrow \pm \infty}(-x+1+\underbrace{\frac{4}{x-2}}_{-0})=\lim _{x \rightarrow \pm \infty}(-x+1)= \pm \infty
\end{aligned}
$$

$$
\text { Nullstelle(n) }\left\{\begin{array}{l}
\text { Nullstelle(n) des Zählerpolynoms } p(x) \\
\text { Beispiel: } f(x)=\frac{x-1}{x^{2}+1} \Rightarrow x-1=0 \Rightarrow x=1 \\
\text { Ausnahme: Nullstelle des Zählerpolynoms ist zugleich Nullst } \\
\text { und daher kürzbar (vgl. hebbare Definitionslücke). } \\
\text { Beispiel: } f(x)=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1
\end{array}\right.
$$

Schlussfolgerung: Waagrechte Asymptote mit der Gleichung $y=\frac{1}{2}$

