Betrachten des Gegenereignisses

  • In einer Urne befinden sich eine gelbe und zwei blaue Kugeln. Es werden nacheinander drei Kugeln gezogen und deren Farbe notiert. Die gezogene Kugel wird jeweils zurückgelegt und zwei weitere Kugeln derselben Farbe in die Urne gegeben. Die Zufallsgröße \(X\) beschreibt die Anzahl der gezogenen gelben Kugeln.

    a) Erstellen Sie ein vollständig beschriftetes Baumdiagramm und geben Sie den Ergebnisraum an.

    b) Berechnen Sie die Wahrscheinlichkeit \(P(X \geq 1)\).

    c) Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit sich mithilfe des Terms \(1 - P(X = 3)\) berechnen lässt.

  • Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

  • Die Abbildung zeigt Daten zu den Rauchergewohnheiten der Bevölkerung Deutschlands, die das Statistische Bundesamt auf der Grundlage einer repräsentiven statistischen Erhebung veröffentlicht hat.

    Abbildung zu Aufgabengruppe Stochastik 1

    Der Abbildung lässt sich beispielsweise entnehmen, dass 17 % der 65- bis 69-jährigen Männer rauchen. Somit kann im Folgenden davon ausgegangen werden, dass die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Mann aus dieser Altersgruppe raucht, 17 % beträgt.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter 25- bis 29-jähriger Mann Nichtraucher ist.

    (2 BE)

  • Vier Frauen wurden zufällig ausgewählt. Zwei gehören zur Altersgruppe der 40- bis 44-jährigen und jeweils eine zu den Altersgruppen der 55- bis 59-jährigen und 65- bis 69-jährigen. Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Frauen mindestens eine Raucherin ist.

    (4 BE)

  • Ein Skeptiker nimmt an, dass der Anteil der Raucherinnen unter den 40- bis 44-jährigen Frauen größer als 30 % ist. Er testet die Nullhypothese \(H_0\,\colon\;p \leq 0{,}3\); dabei gibt \(p\) die Wahrscheinlichkeit dafür an, dass eine 40- bis 44-jährige Frau raucht. Im Rahmen des Tests stellt er jeder der zehn ausgewählten Frauen die Frage „Rauchen Sie?" und erhält dabei folgende Antworten: Ja - Nein - Ja - Nein - Ja - Ja - Nein - Nein - Nein - Ja. Untersuchen Sie, ob das Ergebnis der Befragung die Annahme des Skeptikers auf einem Signifikanzniveau von 5 % stützt.

    (5 BE)

  • Mithilfe der Graphologie werden aus der Handschrift einer Person Rückschlüsse auf deren Persönlichkeit gezogen.

    An einer Fachschule für Graphologie ist eine Dozentenstelle neu zu besetzen. Den Bewerbern sollen im Rahmen eines Vortests Schriftproben vorgelegt werden. Jede Schriftprobe stammt entweder von einer entscheidungsfreudigen oder von einer zögerlichen Person; dies soll dem jeweiligen Bewerber mitgeteilt werden, der sich anschließend bei jeder Schriftprobe entscheiden muss, ob er sie einer entscheidungsfreudigen oder einer zögerlichen Person zuordnet. Ein Bewerber soll den Vortest bestehen, wenn er sich bei mehr als zwei Dritteln der vorgelegten Schriftproben richtig entscheidet.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Bewerber, der nur rät, den Vortest besteht, wenn man ihm zwölf Schriftproben vorlegen würde.

    (5 BE)

  • Die Schulleitung fordert, den Vortest so zu gestalten, dass die Wahrscheinlichkeit dafür, den Vortest zu bestehen, für einen Bewerber, der nur rät, höchstens 3 % beträgt. Man entscheidet sich dafür, die Anzahl vorgelegter Schriftproben auf 30 festzulegen.

    Zeigen Sie, dass mit dieser Festlegung die Forderung der Schulleitung erfüllt ist.

    (3 BE)

  • Ermitteln Sie auf fünf Prozent genau, wie groß die Wahrscheinlichkeit dafür, sich bei einer Schriftprobe richtig zu entscheiden, für einen Bewerber mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass er den Vortest besteht, mindestens 90 % beträgt.

    (3 BE)

  • Bei Kindern besonders beliebt sind die 3D-Bilder, auf denen die Tiere dreidimensional erscheinen. 20 der 200 für ein Sammelalbum vorgesehenen Bilder sind 3D-Bilder.

    Ermitteln Sie, wie viele Päckchen ein Kind mindestens benötigt, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein 3D-Bild zu erhalten.

    (5 BE)

  • Bestimmen Sie unter Zuhilfenahme des Tafelwerks, wie viele Flaschen man mindestens öffnen muss, um mit einer Wahrscheinlichkeit von mehr als 5 % mindestens zwei Gewinnmarken zu finden.

    (4 BE)

  • Das elektronische Stabilitätsprogramm (ESP) eines Autos kann Schleuderbewegungen und damit Unfälle verhindern.

    Gehen Sie bei den folgenden Aufgaben davon aus, dass 40 % aller Autos mit ESP ausgerüstet sind.

    200 Autos werden nacheinander zufällig ausgewählt; die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Autos mit ESP.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den ausgewählten Autos mindestens 70 mit ESP ausgerüstet sind.

    (3 BE)

  • Die Polizei führt an der Messstelle eine Geschwindigkeitskontrolle durch. Bei einer Geschwindigkeit von mehr als 83 km/h liegt ein Tempoverstoß vor. Vereinfachend soll davon ausgegangen werden, dass die Geschwindigkeit eines vorbeifahrenden Pkw mit einer Wahrscheinlichkeit von 19 % größer als 83 km/h ist.

    Berechnen Sie die Anzahl der Geschwindigkeitsmessungen, die mindestens durchgeführt werden müssen, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Tempoverstoß erfasst wird.

    (4 BE)

  • Liegt in einer Stichprobe von 50 Geschwindigkeitsmessungen die Zahl der Tempoverstöße um mehr als eine Standardabweichung unter dem Erwartungswert, geht die Polizei davon aus, dass wirksam vor der Geschwindigkeitskontrolle gewarnt wurde, und bricht die Kontrolle ab. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Geschwindigkeitskontrolle fortgeführt wird, obwohl die Wahrscheinlichkeit dafür, dass ein Tempoverstoß begangen wird, auf 10 % gesunken ist.

    (5 BE)

  • Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

    50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

    \(A\):  „Genau zwei der Teile sind fehlerhaft."

    \(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

    (3 BE)

  • Für das Unternehmen wäre es hilfreich, wenn die Wahrscheinlichkeit dafür, mindestens eine Person mit Reservierung abweisen zu müssen, höchstens ein Prozent wäre. Dazu müsste die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, mindestens einen bestimmten Wert haben. Ermitteln Sie diesen Wert auf ganze Prozent genau.

    (3 BE)

  • Ermitteln Sie, wie viele Haushalte das Unternehmen mindestens anschreiben müsste, damit mit einer Wahrscheinlichkeit von mehr als 99 % wenigstens ein angeschriebener Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, einen solchen einrichten lassen würde. Gehen Sie davon aus, dass sich jeder hundertste angeschriebene Haushalt, der noch nicht über einen schnellen Internetanschluss verfügt, dafür entscheidet, einen solchen einrichten zu lassen.

    (5 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Lisa erreichte im Training in 90 % aller Fälle bei sechs Schüssen mindestens einen Treffer. Bestimmen Sie die Wahrscheinlichkeit dafür, dass ihr erster Schuss im Wettbewerb ein Treffer ist, wenn man davon ausgeht, dass sich ihre Trefferquote im Vergleich zum Training nicht ändert. Legen Sie Ihrer Berechnung als Modell eine geeignete Bernoullikette zugrunde

    (4 BE)

  • Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 15 % der Familien dieses Angebot. Die Zufallsgröße \(X\) beschreibt die Anzahl der Bollerwagen, die von den ersten 200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße \(X\) binomialverteilt ist.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 25 Bollerwaagen ausgeliehen werden. 

    (2 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

Seite 1 von 2