Binomialkoeffizient

  • Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

    (3 BE)

  • Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.

    α) \(\displaystyle 1 - \left( \frac{3}{5} \right)^{8}\)

    β) \(\displaystyle \left( \frac{3}{5} \right)^{8} + 8 \cdot \frac{2}{5} \cdot \left( \frac{3}{5} \right)^{7}\)

    (3 BE)

  • An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.

    Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.

    \(A\): „Anna und Tobias gehören dem Team an."

    \(B\): „Das Team besteht aus gleich vielen Mädchen und Jungen."

    (3 BE)

  • In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

    Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

    \[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

    (3 BE)

  • Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

    (2 BE)

  • Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

    In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

    (2 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Geben Sie einen Term an, mit dem die Wahrscheinlichkeit dafür berechnet werden kann, dass jede Zahl mindestens einmal erzielt wird.

    (3 BE) 

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

  • Der Kurs Theater und Film eines Gymnasiums führt die Bühnenversion des Romans auf.

    Für die Premiere wird die Aula der Schule bestuhlt; in der ersten Reihe werden acht Plätze für Ehrengäste reserviert. Bestimmen Sie die Anzahl der Möglichkeiten, die die fünf erschienenen Ehrengäste haben, sich auf die reservierten Plätze zu verteilen, wenn

    α) die Personen nicht unterschieden werden;

    β) die Personen unterschieden werden.

    Nennen Sie im Sachzusammenhang einen möglichen Grund dafür, dass die möglichen Anordnungen der Ehrengäste auf den reservierten Plätzen nicht gleichwahrscheinlich sind - unabhängig davon, ob die Personen unterschieden werden oder nicht

    (4 BE)

  • Bestimmen Sie die Wahrscheinlichkeit \(p\) mithilfe eines geeigneten Terms.

    (4 BE)

  • Nach der Wahl darf die Partei A in einem Ausschuss drei Sitze besetzen. Von den acht Stadträtinnen und vier Stadträten der Partei A, die Interesse an einem Sitz in diesem Ausschuss äußern, werden drei Personen per Losentscheid als Ausschussmitglieder bestimmt.

    Die Zufallsgröße \(X\) beschreibt die Anzahl der weiblichen Ausschussmitglieder der Partei A. Abbildung 1 zeigt die Wahrscheinlichkeitsverteilung der Zufallsgröße \(X\) mit \(P(X = 0) = \frac{1}{55}\) und \(P(X = 3) = \frac{14}{55}\).

    Abbildung 1Abb. 1

    Abbildung 2Abb. 2

     

    Berechnen Sie die Wahrscheinlichkeiten \(P(X = 1)\) und \(P(X = 2)\).

    (Ergebnis: \(P(X = 1) = \frac{12}{55}\), \(P(X = 2) = \frac{28}{55}\))

    (4 BE)

  • Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

    \(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

    \(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

    \(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

    (5 BE)