Einheitsvektor

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

  • Auf der Geraden \(t\) wird nun der Punkt \(M\) so festgelegt, dass der Abstand der Dachgaube vom First 1 m beträgt. Bestimmen Sie die Koordinaten von \(M\).

    (3 BE)

  • Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

    Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

    I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

    II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

    Ermitteln Sie eine Gleichung für eine dieser Geraden.

    (3 BE)

  • Durch die Punkte \(A\) und \(B\) verläuft die Gerade \(g\).

    Betrachtet werden Geraden, für welche die Bedingungen I und II gelten:

    I  Jede dieser Geraden schneidet die Gerade \(g\) orhogonal.

    II Der Abstand jeder dieser Geraden vom Punkt \(A\) beträgt 3.

    Ermitteln Sie eine Gleichung für eine dieser Geraden.

    (3 BE)

  • Auf der Strecke \([DE]\) gibt es einen Punkt \(K\), für den \(\overline{KE} = \overline{EF}\) gilt.

    Bestimmen Sie die Koordinaten von \(K\).

    (4 BE)

  • Bestimmen Sie die Koordinaten zweier Punkte \(C\) und \(D\) so, dass \(C\) auf \(h\) liegt und das Viereck \(ABCD\) eine Raute ist.

    (4 BE) 

  • Im Mittelpunkt des Grundstücks wird ein Mast errichtet, der durch vier an seiner Spitze befestigte Seile gehalten wird. Die Verankerungspunkte der Seile im Grundstücksboden sind jeweils 15 m vom Mastfußpunkt entfernt und liegen von diesem aus genau in östlicher, nördlicher, westlicher und südlicher Richtung.

    Bestimmen Sie im Modell die Koordinaten des östlichen und nördlichen Verankerungspunkts \(V_O\) bzw. \(V_N\).

    (5 BE)

  • Der Grundkörper ist mit einer dünnen geradlinigen Bohrung versehen, die im Modell vom Punkt \(H\,(11|3|6)\) der Deckfläche \(DCRS\) aus in Richtung des Schnittpunkts der Diagonalen der Grundfläche verläuft. In der Bohrung ist eine gerade Stahlstange mit einer Länge von 1,4 m so befestigt, dass die Stange zu drei Vierteln ihrer Länge aus der Deckfläche herausragt.

    Bestimmen Sie im Modell eine Gleichung der Geraden \(h\), entlang derer die Bohrung verläuft, sowie die Koordinaten des Punkts, in dem die Stange in der Bohrung endet.

    (zur Kontrolle: möglicher Richtungsvektor von \(h\): \(\displaystyle \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}\))

    (7 BE)

  • Zwei Punkte \(U\) und \(V\) der Geraden \(h\) bilden zusammen mit \(P\) und \(Q\) das Rechteck \(PUQV\). Beschreiben Sie einen Weg zur Ermittlung der Koordinaten von \(U\) und \(V\).

    (4 BE)