Exponentialfunktion

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

     

    a) \(f(x) = -2\cos{(3- x)}\)

    b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

    c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

     

    Aufgabe 2

    Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

     

    a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

    b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

     

    a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

    b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

    c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

    d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

     

    Aufgabe 5

    Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

     

    a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

    b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

    c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

    d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

    e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

    f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{a} \colon x \mapsto xe^{ax}\) mit \(a \in \mathbb R \, \backslash \,\{0\}\). Ermitteln Sie, für welchen Wert von \(a\) die erste Ableitung von \(f_{a}\) an der Stelle \(x = 2\) den Wert 0 besitzt.

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle h \colon x \mapsto \frac{3}{e^{x + 1} - 1}\) mit Definitionsbereich \(D_{h} = ]-1;+\infty[\). Abbildung 2 zeigt den Graphen \(G_{h}\) von \(h\).

    abbildung 2 zu Teilaufgabe 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Begründen Sie anhand des Funktionsterms, das \(\lim \limits_{x \, \to \, +\infty} h(x) = 0\) gilt.

    Zeigen Sie rechnerisch für \(x \in D_{h}\), dass für die Ableitung \(h'\) von \(h\) gilt: \(h'(x) < 0\).

    (4 BE)

  • In einem Labor wird ein Verfahren zur Reinigung von mit Schadstoffen kontaminiertem Wasser getestet. Die Funktion \(h\) aus Aufgabe 2 beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung des momentanen Schadstoffabbaus in einer bestimmten Wassermenge. Dabei bezeichnet \(h(x)\) die momentane Schadstoffabbaurate in Gramm pro Minute und \(x\) die seit Beginn des Reinigungsvorgangs vergangene Zeit in Minuten.

    Bestimmen Sie auf der Grundlage des Modells den Zeitpunkt \(x\), zu dem die momentane Schadstoffabbaurate auf 0,01 Gramm pro Minute zurückgegangen ist.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h : x \mapsto 6 \cdot e^{-0{,}5x} + 1{,}5\). Die Abbildung zeigt den in \(\mathbb R\) streng monoton fallenden Graphen \(G_h\) von \(h\) sowie dessen Asymptote, die durch die Gleichung \(y = 1{,}5\) gegeben ist.

    Beschreiben Sie, wie \(G_h\) aus dem Graphen der in \(\mathbb R\) definierten natürlichen Exponentialfunktion \(x \mapsto e^x\) hervorgeht.

    Abbildung Teilaufgabe 2a: Exponetialfunktion h, streng monoton fallend, Asymptote =1,5

    (4 BE)

  • Haben zu Beobachtungsbeginn Sonnenblumen der Sorte Tramonto die gleiche Höhe wie Sonnenblumen der Sorte Alba, so erreichen von da an die Sonnenblumen der Sorte Tramonto im Vergleich zu denen der Sorte Alba jede Höhe in der Hälfte der Zeit.

    Das Wachstum von Sonnenblumen der Sorte Tramonto lässt sich modellhaft mithilfe einer in \(\mathbb R\) definierten Funktion \(g\) beschreiben, die eine Funktionsgleichung der Form I, II, oder III mit \(k \in \mathbb R^+\) besitzt:

    \[\textsf{I}\enspace y = \frac{2e^{x+k}}{e^{x+k}+9}\]

    \[\textsf{II}\enspace y = k \cdot \frac{2e^x}{e^x + 9}\]

    \[\textsf{III}\enspace y = \frac{2e^{kx}}{e^{kx} + 9}\]

    Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten und \(y\) ein Näherungswert für die Höhe einer Blume in Metern.

    Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II als Funktionsgleichung von \(g\) infrage kommt.

    (4 BE)

  • Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

    (5 BE)

  • Die Funktionsgleichung von \(g\) hat also die Form III. Geben Sie den passenden Wert von \(k\) an.

    (1 BE)

  • Ein Biologe nimmt an, dass sich das Wachstum der Blumen vor Beobachtungsbeginn näherungsweise durch die Gleichung der Tangente aus Aufgabe 1d beschreiben lässt. Untersuchen Sie mithilfe einer Rechnung, ob diese Annahme damit in Einklang steht, dass vom Zeitpunkt des Auskeimens bis zum Beobachtungsbeginn etwa zwei Wochen vergehen.

    (4 BE)

  • Berechnen Sie den Inhalt der Fläche, die \(G_f\) mit den Koordinatenachsen und der Geraden \(x = 4\) einschließt.

    (4 BE)

  • Begründen Sie mithilfe des Funktionsterms von \(f\), dass \(\lim \limits_{x \, \to \, -\infty} f(x) = 0\) und \(\lim \limits_{x \, \to \, +\infty} f(x) = 2\) gilt.

    (2 BE)

  • Berechnen Sie auf der Grundlage des Modells, wie viele Monate nach Beobachtungsbeginn eine Sonnenblume eine Höhe von 1,5 Metern erreicht. Beschreiben Sie, wie man den Wert graphisch überprüfen kann.

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \displaystyle \frac{2e^x}{e^x + 9}\) mit Definitionsbereich \(\mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\,\).

    Abbildung 2: Graph von fAbb. 2

    Zeigen Sie rechnerisch, dass \(G_f\) genau einen Achsenschnittpunkt \(S\) besitzt, und geben Sie die Koordinaten von \(S\) an.

    (2 BE)

  • Begründen Sie, dass \(f\) in \(\mathbb R\) umkehrbar ist. Geben Sie den Definitionsbereich und den Wertebereich der Umkehrfunktion \(f^{-1}\) an und zeichnen Sie den Graphen von \(f^{-1}\) in Abbildung 2 ein.

    (6 BE)

  • Das Wachstum von Sonnenblumen der Sorte Alba lässt sich modellhaft mithilfe der Funktion \(f\) beschreiben. Beginnt man die Beobachtung zwei Wochen nach der Auskeimung einer Sonnenblume dieser Sorte, so liefert \(f(x)\) für \(x \in [0;4]\) im Modell die Höhe der Blume in Metern. Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten. In den Aufgaben 2a bis 2d werden auschließlich Sonnenblumen der Sorte Alba betrachtet.

    Berechnen Sie auf der Grundlage des Modells, um wie viele Zentimeter eine Sonnenblume innerhalb der ersten zwei Monate nach Beobachtungsbeginn wächst.

    (2 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Achsenschnittpunkt \(S\).

    (Ergebnis: \(y = 0{,}18x + 0{,}2\))

    (2 BE)

Seite 1 von 2