Mathematik Abitur Bayern 2015

  • Gegeben ist die Funktion \(f \colon x \mapsto \left(x^3 - 8 \right) \cdot (2 + \ln x)\) mit maximalem Definitionsbereich D.

    Geben Sie D an.

    (1 BE)

  • Bestimmen Sie die Nullstellen von \(f\).

    (2 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\), \(g\) und \(h\) mit \(f(x) = x^2 - x + 1\), \(g(x) = x^3 - x + 1\) und \(h(x) = x^4 + x^2 + 1\).

    Abbildung 1 zeigt den Graphen einer der drei Funktionen. Geben Sie an, um welche Funktion es sich handelt. Begründen Sie, dass der Graph die anderen beiden Funktionen nicht darstellt.

    Abbildung 1 zu Teilaufgabe 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 1

     

    (3 BE)

  • Die erste Ableitung von \(h\) ist \(h'\).

    Bestimmen Sie den Wert von \(\displaystyle \int _{0}^{1}h'(x)\,dx\). 

    (2 BE)

  • Geben Sie einen positiven Wert für den Parameter \(a\) an, sodass die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sin(ax)\) eine Nullstelle in \(\displaystyle x = \frac{\pi}{6}\) hat.

    (1 BE)

  • Ermitteln Sie den Wert des Parameters \(b\), sodass die Funktion \(g \colon x \mapsto \sqrt{x^2 - b}\) den maximalen Definitionsbereich \(\mathbb R \,\backslash\; ]-2;2[\) besitzt.

    (2 BE)

  • Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.

    (2 BE)

  • Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.

    Abbildung 2 zu Teilaufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 2

     

    (2 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = x^3 - 6x^2 + 11x - 6\) und \(x \in \mathbb R\).

    Weisen Sie nach, dass der Wendepunkt des Graphen von \(f\) auf der Geraden mit der Gleichung \(y = x - 2\) liegt.

    (3 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln(2x + 3)\) mit maximaler Definitionsmenge \(D\) und Wertemenge \(W\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D\) und \(W\) an.

    (2 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

  • Die Funktion \(k\) hat in \(x = 2\) eine Nullstelle und in \(x = -3\) eine Polstelle ohne Vorzeichenwechsel. Der Graph von \(k\) hat die Gerade mit der Gleichung \(y = 1\) als Asymptote. 

    (3 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{a} \colon x \mapsto xe^{ax}\) mit \(a \in \mathbb R \, \backslash \,\{0\}\). Ermitteln Sie, für welchen Wert von \(a\) die erste Ableitung von \(f_{a}\) an der Stelle \(x = 2\) den Wert 0 besitzt.

    (4 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

  • Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.

    (2 BE)

  • Ein Moderator lädt zu einer Talkshow drei Politiker, eine Journalistin und zwei Mitglieder einer Bürgerinitiative ein. Für die Diskussionsrunde ist eine halbkreisförmige Sitzordnung vorgesehen, bei der nach den Personen unterschieden wird und der Moderator den mittleren Platz einnimmt.

    Geben Sie einen Term an, mit dem die Anzahl der möglichen Sitzordnungen berechnet werden kann, wenn keine weiteren Einschränkungen berücksichtigt werden.

    (1 BE)

  • Der Sender hat festgestellt, dass unmittelbar neben dem Moderator auf einer Seite die Journalistin und auf der anderen Seite einer der Politiker sitzen soll. Berechnen Sie unter Berücksichtigung dieser weiteren Einschränkung die Anzahl der möglichen Sitzordnungen. 

    (4 BE)

  • In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe notiert und die Kugel anschließend wieder zurückgelegt.

    Geben Sie einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses „Es werden gleich viele rote und blaue Kugeln gezogen." berechnet werden kann. 

    (2 BE)

Seite 1 von 4