Mathematik Abitur Bayern 2022

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x^2 + 2x}{x+1}\) mit maximaler Definitionsmenge \(D_f\). Geben Sie \(D_f\) und die Nullstellen von \(f\) an

    (2 BE) 

  • Geben Sie einen Term einer gebrochen-rationalen Funktion an, die die folgenden Eigenschaften hat: Die Funktion \(h\) ist in \(\mathbb R\) definiert; ihr Graph besitzt die Gerade mit der Gleichung \(y = 3\) als waagrechte Asymptote und schneidet die \(y\)-Achse im Punkt \((0|4)\).

    (3 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(g \colon x \mapsto \dfrac{4}{x}\). Abbildung 1 zeigt den Graphen von \(g\).

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 1

    Berechnen Sie den Wert des Integrals \(\displaystyle \int_1^e g(x)dx\).

    (2 BE)

  • Ermitteln Sie grafisch diejenige Stelle \(x_0 \in \mathbb R^+\), für die gilt: Die lokale Änderungsrate von \(g\) an der Stelle \(x_0\) stimmt mit der mittleren Änderungsrate von \(g\) im Intervall \([1;4]\) überein.

    (3 BE)

  • Der Graph \(G_f\) der in \(\mathbb R\) definierten ganzrationalen Funktion \(f\) besitzt nur an der Stelle \(x = 3\) eine waagrechte Tangente (vgl. Abbildung 2).

    Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g\) mit \(g(x) = f\left(f(x)\right)\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 2

    Geben Sie mithilfe von Abbildung 2 die Funktionswerte \(f(6)\) und \(g(6)\) an

    (2 BE)

  • Gemäß der Kettenregel gilt \(g'(x) = f'\left( f(x) \right) \cdot f'(x)\). Ermitteln Sie damit und mithilfe von Abbildung 2 alle Stellen, an denen der Graph von \(g\) eine waagrechte Tangente besitzt.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \dfrac{2x^2}{x^2 - 9}\) mit maximaler Definitionsmenge \(D_g\).

    Geben Sie \(D_g\) sowie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) an.

    (2 BE)

  • Zeigen Sie, dass der Graph von \(g\) in genau einem Punkt eine waagrechte Tangente besitzt.

    (3 BE)

  • Betrachtet werden die in \(\mathbb R\) definierten Funktionen \(f\) und \(F\), wobei \(F\) eine Stammfunktion von \(f\) ist. Abbildung 1 zeigt den Graphen \(G_F\) von \(F\).

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 1

    Bestimmen Sie den Wert des Integrals \(\displaystyle \int_1^7 f(x)dx\).

    (2 BE)

  • Bestimmen Sie den Funktionswert von \(f\) an der Stelle 1; veranschaulichen Sie Ihr Vorgehen in Abbildung 1.

    (3 BE)

  • Gegeben ist die Funktion \(h \colon x \mapsto \ln{(2x - 3)}\) mit Definitionsmenge \(D_h = \; ]\frac{3}{2};+\infty[\). Geben Sie die Nullstelle von \(h\) sowie einen Term der ersten Ableitungsfunktion von \(h\) an.

    (2 BE)

  • Die in \(\mathbb R\) definierte Funktion \(f\) besitzt die Nullstelle \(x = 2\), außerdem gilt \(f'(x) > 0\) für alle \(x \in \mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Betrachtet wird die Funktion \(g \colon x \mapsto \ln{\left( f(x) \right)}\) mit maximaler Definitionsmenge \(D_g\). Geben Sie \(D_g\) an und ermitteln Sie mithilfe von Abbildung 2 diejenige Stelle \(x\), für die \(g'(x) = f'(x)\) gilt.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Gegeben sind die im Folgenden beschriebenen Zufallsgrößen \(X\) und \(Y\):

    • Ein Würfel, dessen Seiten mit den Zahlen von 1 bis 6 durchnummeriert sind, wird zweimal geworfen. \(X\) gibt die dabei erzielte Augensumme an.
    • Aus einem Behälter mit 60 schwarzen und 40 weißen Kugeln wird zwölfmal nacheinander jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. \(Y\) gibt die Anzahl der entnommenen schwarzen Kugeln an.

    Begründen Sie, dass die Wahrscheinlichkeit \(P(X = 4)\) mit der Wahrscheinlichkeit \(P(X = 10)\) übereinstimmt.

    (2 BE)

  • Die Wahrscheinlichkeitsverteilungen von \(X\) und \(Y\) werden jeweils durch eines der folgenden Diagramme I, II und III dargestellt. Ordnen Sie \(X\) und \(Y\) jeweils dem passenden Diagramm zu und begründen Sie Ihre Zuordnung.

    Diagramm I Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm II Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    Diagramm III Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2022

    (3 BE)

  • Die Abbildung zeigt das Netz eines Würfels, von dem nur drei Seiten beschriftet sind.

    Abbildung Stochastik 2 Prüfungsteil A Mathematik Abitur Bayern 2022

    Der Würfel wird so lange geworfen, bis die Zahl 1 zum ersten Mal erzielt wird. Berechnen Sie die Wahrscheinlichkeit dafür, dass genau viermal gewürfelt wird.

    (2 BE)

  • Die drei leeren Seiten des Würfels sollen jeweils mit einer positiven geraden Zahl beschriftet werden. Ermitteln Sie eine Möglichkeit für die Beschriftung dieser drei Seiten, sodass bei einmaligem Werfen des Würfels der Erwartungswert für die Zahl \(\dfrac{31}{6}\) beträgt.

    (3 BE)

Seite 1 von 4