momentane Änderungsrate

  • Abbildung zu Aufgabe 4 Klausur Q11/1-004

    Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

    Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

     

    a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

    (Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

    b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

  • Berechnen Sie einen Näherungswert für \(\displaystyle \int_{0}^{1} h(x)\,dx\), indem Sie den Zusammenhang \(\displaystyle \int_{0}^{1}h(x)\,dx \approx \int_{0}^{1}k(x)\,dx\) verwenden. Geben Sie die Bedeutung dieses Wertes im Sachzusammenhang an.

    (5 BE)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • Bestimmen Sie anhand des Graphen der Funktion \(V\) näherungsweise die momentane Änderungsrate des Wasservolumens zwei Stunden nach Beobachtungsbeginn.

    (3 BE)

  • Erläutern Sie die Bedeutung des Werts des Integrals \(\displaystyle \int_{a}^{b} g(t) dt\) für \(0 \leq a < b \leq 12\) im Sachzusammenhang. Berechnen Sie das Volumen des Wassers, das sich 7,5 Stunden nach Beobachtungsbeginn im Becken befindet, wenn zu Beobachtungsbeginn 150 m³ Wasser im Becken waren. Begründen Sie, dass es sich hierbei um das maximale Wasservolumen im Beobachtungszeitraum handelt.

    (6 BE)

  • Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

    (4 BE)

  • Nur zu dem Zeitpunkt, der im Modell durch \(x_{0}\) (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von \(A\) im Punkt \((x_{0}|A(x_{0}))\) an, die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

    (2 BE)

  • Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term \(A(x)\) die im Exponenten zur Basis e enthaltene Zahl -0,2 durch eine kleinere Zahl ersetzt.

    Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

    ● hinsichtlich der durch \(A(0)\) und \(\lim \limits_{x\,\to\,+\infty} A(x)\) beschriebenen Eigenschaften (vgl. Aufgabe 2a).

    ● hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

    Skizzieren Sie - ausgehend von diesem Vergleich - in der Abbildung 2 den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

    (5 BE)

  • Die Funktion \(p\) besitzt im Intervall \([4;12]\) eine Wendestelle. Geben Sie die Bedeutung dieser Wendestelle im Sachzusammenhang an.

    (2 BE)

  • Die von der Anlage produzierte elektrische Energie wird vollständig in das Stromnetz eingespeist. Der Hauseigentümer erhält für die eingespeiste elektrische Energie eine Vergütung von 10 Cent pro Kilowattstunde (kWh).

    Die in \([4;20]\) definierte Funktion \(x \mapsto E(x)\) gibt die elektrische Energie in kWh an, die die Anlage am betrachteten Tag von 4:00 Uhr bis x Stunden nach Mitternacht in das Stromnetz einspeist.

    Es gilt \(E'(x) = p(x)\) für \(x \in [4;20]\).

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für die Vergütung, die der Hauseigentümer für die von 10:00 Uhr bis 14:00 Uhr in das Stromnetz eingespeiste elektrische Energie erhält.

    (3 BE)

  • Es wird nun ein bestimmtes Bohrloch im Wasserspeicher betrachtet. Durch das Abfließen verringert sich das Volumen des Wassers im Speicher in Abhängigkeit von der Zeit. Die Funktion \(g \colon t \mapsto 0{,}25t - 25\) mit \(0 \leq t \leq 100\) beschreibt modellhaft die zeitliche Entwicklung dieser Volumenänderung. Dabei ist \(t\) die seit der Fertigstellung des Bohrlochs vergangene Zeit in Sekunden und \(g(t)\) die momentane Änderungsrate des Wasservolumens im Speicher in Litern pro Sekunde.

    Berechnen Sie das Volumen des Wassers in Litern, das innerhalb der ersten Minute nach Fertigstellung des Bohrlochs aus dem Behälter abfließt.

    (4 BE)

  • Auf der Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
    An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in \(\mathbb R\) definierten Funktion \(f\) mit
    \(f(x) = x \cdot (8 - 5x) \cdot \left( 1 - \frac{x}{4} \right)^2 = -\frac{5}{16}x^4 + 3x^3 - 9x^2 + 8x\)
    beschrieben werden. Dabei gibt \(x\) die nach 06:00 Uhr vergangene Zeit in Stunden und \(f(x)\) die momentane Änderungsrate der Staulänge in Kilometern pro Stunde an. Die Abbildung 1 zeigt den Graphen von \(f\) für \(0 \leq x \leq 4\).
    Für die erste Ableitungsfunktion von \(f\) gilt \(f'(x) = (5x^2-16x+8) \cdot \left( 1 - \frac{x}{4} \right)\).

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 1

    Nennen Sie die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründen Sie anhand der Struktur des Funktionsterms von \(f\), dass es keine weitere solchen Zeitpunkte gibt.

    (3 BE) 

  • Es gilt \(f(2) < 0\). Geben Sie die Bedeutung dieser Tatsache im Sachzusammenhang an.

    (1 BE) 

  • Bestimmen Sie rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.

    (5 BE) 

  • Geben Sie den Zeitpunkt an, zu dem der Stau am längsten ist. Begründen Sie Ihre Angabe.

    (2 BE) 

  • Im Sachzusammenhang ist neben der Funktion \(f\) die in \(\mathbb R\) definierte Funktion \(s\) mit \(s(x) = \left( \frac{x}{4} \right)^2 \cdot (4 - x)^3 = -\frac{1}{16}x^5 + \frac{3}{4}x^4 - 3x^3 + 4x^2\) von Bedeutung.

    Begründen Sie, dass die folgende Aussage richtig ist:

    Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion \(s\) angegeben werden.

    Bestätigen Sie rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.

    (4 BE) 

  • Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 2 gezeigten Graphen dargestellt. Dabei ist \(x\) die nach 06:00 Uhr vergangene Zeit in Stunden und \(y\) die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 2

    Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der Abbildung 2, begründen Sie Ihre Markierung und veranschaulichen Sie Ihre Begründung in der Abbildung 2.

    (3 BE) 

  • Bestimmen Sie mithilfe von \(G_f\) für \(t = 4\) und \(t = 3\) jeweils einen Näherungswert für die mittlere Änderungsrate von \(f\) im Zeitintervall \([2;t]\,\). Veranschaulichen Sie Ihr Vorgehen in Abbildung 3 durch geeignete Steigungsdreiecke. Welche Bedeutung hat der Grenzwert der mittleren Änderungsraten für \(t \to 2\) im Sachzusammenhang?

    (5 BE)