Nullstelle(n) einer quadratischen Funktion

  • a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

  • Aufgabe 1

    Gegeben ist die Funktion \(f\) mit \(f(x) = -\dfrac{3}{x - 2}\).

    a) Bestimmen Sie \(\lim \limits_{x\,\to\,-\infty}f(x)\) und \(\lim \limits_{x\,\to\,+\infty}f(x)\). Beschreiben Sie Ihre Ergebnisse in Worten und interpretieren Sie diese graphisch.

    b) Der Graph der Funktion \(g\) geht aus dem Graphen der Funktion \(f\) durch Verschiebung in \(x\)-Richtung und in \(y\)-Richtung hervor, wobei er die Asymptoten mit den Gleichungen \(x = 3\) und \(y = -2\) besitzt. Geben Sie die zugehörige Verschiebung in \(x\)-Richtung und in \(y\)-Richtung an sowie einen Funktionsterm von \(g\).

    c) Der Graph der Funktion \(h\) entsteht aus dem Graphen der Funktion \(f\) durch eine Streckung mit dem Faktor 3 in \(y\)-Richtung und eine anschließende Verschiebung um 2 in \(y\)-Richtung. Der Graph der Funktion \(k\) entsteht aus dem Graphen der Funktion \(f\) durch die angegebene Streckung und Verschiebung in umgekehrter Reihenfolge. Entscheiden Sie, ob folgende Aussage richtig ist: „Die Funktionsterme von \(h\) und \(k\) unterscheiden sich." Begründen Sie ihre Entscheidung.

     

    Aufgabe 2

    Graph einer Funktion f, Auf Stetigkeit zu beurteilende Stellen x₁,x₂ und x₃

    a) Die Abbildung zeigt den Graphen einer Funktion \(f\). Erläutern Sie anhand des Graphen, ob die Funktion \(f\) an den Stellen \(x_1\), \(x_2\) und \(x_3\) jeweils stetig ist.

    b) Gegeben ist die Funktion

    \[g \colon x \mapsto \begin{cases} \begin{align*} &ax + a &&\text{für} \; x < 1 \\[0.8em] &-2 &&\text{für}\;1 \leq x < 5 \\[0.8em] &b \cdot (x^3 - 10x^2 + 25x)-2 &&\text{für}\;x \geq 5 \end{align*} \end{cases}\enspace\text{mit}\;a, b \in \mathbb R\]

    Bestimmen Sie den Wert von \(a\) so, dass \(g\) an der Stelle \(x = 1\) stetig ist und zeigen Sie, dass \(g\) an der Stelle \(x = 5\) unabhängig vom Wert von \(b\) stetig ist.

      

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x(x-3)}{(x-2)^2}\) mit maximaler Definitionsmenge \(D_f\).

    a) Geben Sie \(D_f\) an und entscheiden Sie, welcher der Graphen I bis IV den Graphen der Funktion \(f\) darstellt. Begründen Sie Ihre Entscheidung.

    Klausur Q11/1-005 Aufgabe1 Graph I

    Klausur Q11/1-005 Aufgabe1 Graph II

     

    Klausur Q11/1-005 Aufgabe1 Graph III

    Klausur Q11/1-005 Aufgabe1 Graph IV

    b) Graph IV zeigt den Graphen einer gebrochenrationalen Funktion \(g\), der eine schräge Asymptote mit der Gleichung \(y = -x + 4\) besitzt. Die Koordinaten der Schnittpunkte des Graphen von \(g\) mit den Koordinatenachsen sowie die Polstelle von \(g\) sind ganzzahlig.

    Geben Sie an, welcher der folgenden Funktionsterme die Funktion \(g\) beschreibt.

    \[\text{A}\quad\frac{1}{x - 2} -x +4\]

    \[\text{B}\quad-\frac{1}{x-2} -x +4\]

    \[\text{C}\quad\frac{1}{2-x} +x - 4\]

    \[\text{D}\quad\frac{1}{2-x}-x-4\]

     

    Aufgabe 4

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{-2x-4}{x^3+6x^2+9x}\) mit maximaler Definitionsmenge \(D_f\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    a) Geben Sie die Nullstelle von \(f\) an. Untersuchen Sie \(f\) auf Polstellen und geben Sie \(D_f\) an. Bestimmen Sie das Verhalten von \(G_f\) an den Definitionslücken.

    b) Untersuchen Sie \(G_f\) auf schräge oder waagrechte Asymptoten.

    c) Berechnen Sie \(f(-4)\) und \(f(1)\) und zeichnen Sie \(G_f\) im Bereich \(-7 < x < 4\) in ein Koordinatensystem.

     

    Aufgabe 5

    a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

     

    Aufgabe 6

    Beim Fernsehsender „Sport TV" treten bei Live-Übertragungen mit einer Wahrscheinlichkeit von 4 % Bildstörungen auf. Wenn das Bild gestört ist, kommt es mit einer Wahrscheinlichkeit von 60 % auch zu Tonstörungen. Bei 13,6 % der Übertragungen kommt es zu Bild- oder Tonstörungen.

    Betrachte werden folgende Ereignisse:

    \(B\): „Es tritt eine Bildstörung bei der Live-Übertragung auf",

    \(T\): „Es tritt eine Tonstörung bei der Live-Übertragung auf".

    a) Zeigen Sie, dass bei 12 % aller Live-Übertragungen Tonstörungen auftreten.

    b) Berechnen Sie die Wahrscheinlichkeit dafür, dass bei einer Live-Übertragung

    1. ein einwandfreies Bild empfangen wird, falls der Ton gestört ist.
    2. Bild oder Ton einwandfrei empfangen werden.

    c) Untersuchen Sie, ob die Ereignisse \(B\) und \(T\) stochastisch unabhängig sind.

  • Aufgabe 1

    Bestimmen Sie die Ableitungsfunktion \(f'\) der Funktion \(f \colon x \mapsto (3x - 2)(x + 1) - \dfrac{1}{x}\) und vereinfachen Sie den Term.

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie \(D_{f}\) an.

    b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

    d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

    e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto -\dfrac{1}{8}x^{3} + \dfrac{3}{2}x^{2} - \dfrac{9}{2}x\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Untersuchen Sie das Monotonieverhalten der Funktion \(f\) und geben Sie die Lage und die Art der lokalen Extrempunkte von \(G_{f}\) an.

     

    Aufgabe 4

    Graph der Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\).

    Ordnen Sie dem Graphen der Funktion \(f\) aus den Graphen I bis VI den Graphen der zugehörigen Ableitungsfunktion \(f'\) und einer zugehörigen Stammfunktion \(F\) zu. Begründen Sie Ihre Wahl.

    Graph I

    Graph II

    Graph III

    Graph IV

    Graph V

    Graph VI

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto 3x + 2 + \dfrac{1}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bzgl. des Koordinatensystems.

    b) Geben Sie die Art und die Gleichungen aller Asymptoten der Funktion \(f\) an.

    c) Geben Sie eine Stammfunktion der Funktion \(f\) an.

     

    Aufgabe 6

    Graph einer Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\). Die Ableitungsfunktion von \(f\) wird mit \(f'(x)\) bezeichnet, eine Stammfunktion von \(f\) wird mit \(F(x)\) bezeichnet. 

    Entscheiden Sie jeweils, ob die nachfolgenden Aussagen richtig oder falsch sind und begründen Sie Ihre Entscheidung.

    a) \(f'(x)\) hat genau zwei Nullstellen.

    b) \(f'(x) < 0\) für \(5{,}5 < x < 6{,}5\)

    c) \(f'(6) > f'(7)\)

    d) \(f'(4) \approx f'(6)\)

    e) Der Graph von \(F(x)\) hat an der Stelle \(x = 6\) in etwa die Steigung \(-1\).

    f) Der Graph von \(F(x)\) hat an der Stelle \(x = 7\) einen Terrassenpunkt.

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie \(D_{f}\) an.

    b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

    d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

    e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \ln{\left( -\dfrac{3}{x} \right)}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs \(D_{f}\).

    b) Zeigen Sie durch Rechnung, dass \(G_{f}\) in \(D_{f}\) linksgekrümmt ist.

     

    Aufgabe 3

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 2\sqrt{6 - x}\) mit dem Definitionsbereich \(D_{f} = [0;6]\). Der Punkt \(P(x|f(x))\), der Lotfußpunkt \(L(x|0)\) des Lotes von \(P\) auf die \(x\)-Achse und der Koordinatenursprung \(O\) legen das Dreieck \(OLP\) fest.

    Bestimmen Sie die Koordinaten des Punktes \(P\), sodass der Flächeninhalt \(A\) des Dreiecks \(OLP\) maximal ist.

    Abbildung zu Klausur Q11/2-004 Aufgabe 3

     

    Aufgabe 4

    Gegeben sind die Kugel \(K_{1}\) mit dem Mittelpunkt \(M_{1}(-3|5|8)\) und dem Radius \(r_{1} = 3\) sowie die Kugel \(K_{2}\) mit dem Mittelpunkt \(M_{2}(7|-5|3)\) und dem Radius \(r_{2} = 7\).

    Untersuchen Sie die gegenseitige Lage der Kugeln \(K_{1}\) und \(K_{2}\) und berechnen Sie ggf. den Abstand der beiden Kugeln.

     

    Aufgabe 5

    Bei der Herstellung wiederaufladbarer Batterien treten zwei Fehler auf.

    \(A\): Die Abmessung der Batterie weicht von der Typennorm ab.

    \(L\): Die Ladekapazität der Batterie liegt 20 % unter dem Sollwert.

    Laut Qualitätskontrolle weisen 15 % der Batterien den Fehler \(L\) auf und 5 % den Fehler \(A\). Die Wahrscheinlichkeit, dass mindestens einer der beiden Fehler auftritt, wird mit 17 % angegeben.

    a) Beschreiben Sie folgende Ereignisse im Sachzusammenhang:

    α) \(\overline{\overline{A} \cap \overline{L}}\)

    β) \((A \cap \overline{L}) \cup (\overline{A} \cap L)\)

    b) Erstellen Sie eine den Sachverhalt beschreibende vollständig ausgefüllte Vierfeldertaffel.

    c) Zeigen Sie dass die Ereignisse \(A\) und \(L\) stochastisch abhängig sind.

    d) Erstellen Sie ein vollständig ausgefülltes Baumdiagramm, beginnend mit dem Ereignis \(A\). Beschreiben Sie, woran sich die stochastische Abhängigkeit der Ereignisse \(A\) und \(L\) an diesem Baumdiagramm erkennen lässt.

  • Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an und bestimmen Sie jeweils die Nullstelle(n). Bilden Sie jeweils die Ableitungsfunktion und vereinfachen Sie soweit wie möglich.

    a) \(f(x) = 2\ln{(3\sqrt{x})}\)

    b) \(g(x) = xe^{4 - 3x} + \dfrac{x^{2}}{e^{3x - 4}}\)

    c) \(h(x) = x^{3} \cdot \sin{\left( \dfrac{\pi}{3}x \right)}\)

  • Gegeben ist die Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2\) mit Definitionsbereich \(\mathbb R\). Der Graph von \(h\) wird mit \(G_h\) bezeichnet.

    Geben Sie die Nullstellen von \(h\) an und zeichnen Sie \(G_h\) in ein Koordinatensystem ein.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Abbildung 1 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(p \colon x \mapsto 0{,}5 \cdot (x + 2)^2 - 0{,}5\), die die Nullstellen \(x = -3\) und \(x = -1\) hat.

    Für \(x \in D_{f}\) gilt \(\displaystyle f(x) = \frac{1}{p(x)}\).

    Abbildung 1 zu Teilaufgabe 1c Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Gemäß der Quotientenregel gilt für die Ableitung \(f'\) und \(p'\) die Beziehung \(\displaystyle f'(x) = -\frac{p'(x)}{\big( p(x) \big)^2}\) für \(x \in D_{f}\).

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von \(f'(x)\) und \(p'(x)\), dass \(x = -2\) einzige Nullstelle von \(f'\) ist und dass \(G_{f}\) in \(]-3;-2[\) streng monoton steigend sowie in \(]-2;1[\) streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von \(G_{f}\) an.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto (1 - x^{2}) \cdot e^{-x}\). Die Abbildung zeigt den Graphen \(G_{f}\) von \(f\).

    Abbildung Aufgabe 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Zeigen Sie, dass \(f\) genau zwei Nullstellen besitzt.

    (2 BE)

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(h_{k} \colon x \mapsto (1 - kx^{2}) \cdot e^{-x}\) mit \(k \in \mathbb R\). Der Graph von \(h_{k}\) wird mit \(G_{k}\) bezeichnet. Für \(k = 1\) ergibt sich die bisher betrachtetet Funktion \(f\).

    Geben Sie in Abhängigkeit von \(k\) die Anzahl der Nullstellen von \(h_{k}\) an.

    (2 BE)

  • Für einen bestimmten Wert von \(k\) besitzt \(G_{k}\) zwei Schnittpunkte mit der \(x\)-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

    (3 BE)

  • Gegeben ist die Funktion \(\displaystyle f \colon x \mapsto \frac{2x + 3}{x^2 + 4x + 3}\) mit maximaler Definitionsmenge \(D\). Bestimmen Sie \(D\) sowie die Nullstelle vom \(f\,\).

    (3 BE)

  • Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

    (5 BE)