Schnittpunkt mit der x-Achse

  • Aufgabe 1

    Bestimmen Sie die Ableitungsfunktion \(f'\) der Funktion \(f \colon x \mapsto (3x - 2)(x + 1) - \dfrac{1}{x}\) und vereinfachen Sie den Term.

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie \(D_{f}\) an.

    b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

    d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

    e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto -\dfrac{1}{8}x^{3} + \dfrac{3}{2}x^{2} - \dfrac{9}{2}x\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Untersuchen Sie das Monotonieverhalten der Funktion \(f\) und geben Sie die Lage und die Art der lokalen Extrempunkte von \(G_{f}\) an.

     

    Aufgabe 4

    Graph der Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\).

    Ordnen Sie dem Graphen der Funktion \(f\) aus den Graphen I bis VI den Graphen der zugehörigen Ableitungsfunktion \(f'\) und einer zugehörigen Stammfunktion \(F\) zu. Begründen Sie Ihre Wahl.

    Graph I

    Graph II

    Graph III

    Graph IV

    Graph V

    Graph VI

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto 3x + 2 + \dfrac{1}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bzgl. des Koordinatensystems.

    b) Geben Sie die Art und die Gleichungen aller Asymptoten der Funktion \(f\) an.

    c) Geben Sie eine Stammfunktion der Funktion \(f\) an.

     

    Aufgabe 6

    Graph einer Funktion f

    Die Abbildung zeigt den Graphen \(G_{f}\) einer Funktion \(f\). Die Ableitungsfunktion von \(f\) wird mit \(f'(x)\) bezeichnet, eine Stammfunktion von \(f\) wird mit \(F(x)\) bezeichnet. 

    Entscheiden Sie jeweils, ob die nachfolgenden Aussagen richtig oder falsch sind und begründen Sie Ihre Entscheidung.

    a) \(f'(x)\) hat genau zwei Nullstellen.

    b) \(f'(x) < 0\) für \(5{,}5 < x < 6{,}5\)

    c) \(f'(6) > f'(7)\)

    d) \(f'(4) \approx f'(6)\)

    e) Der Graph von \(F(x)\) hat an der Stelle \(x = 6\) in etwa die Steigung \(-1\).

    f) Der Graph von \(F(x)\) hat an der Stelle \(x = 7\) einen Terrassenpunkt.

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{3x^{2} + 3x - 6}{{(x + 1)}^{2}}\) mit dem maximalen Definitionsbereich \(D_{f}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie \(D_{f}\) an.

    b) Ermitteln Sie die Koordinaten aller Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Verhalten der Funktion \(f\) an den Rändern des Definitionsbereichs.

    d) Stellen Sie die Gleichung der Tangente \(T\) an \(G_{f}\) sowie die Gleichung der Normalen \(N\) an der Stelle \(x = 1\) auf.

    e) Zeichnen Sie \(G_{f}\), die Tangente \(T\) und die Normale \(N\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    f) Bestimmen Sie den Flächeninhalt des Dreiecks, welches die Tangente \(T\) und die Normale \(N\) mit der \(y\)-Achse bilden.

  • Aufgabe 1

    Bestimmen Sie jeweils die erste Ableitung der folgenden Funktionen, ohne anschließend zu vereinfachen.

     

    a) \(f(x) = 2\sqrt{x} \cdot \cos(0{,}5x)\)

    b) \(g(x) = \dfrac{\ln\left(\dfrac{1}{x^{3}}\right)}{2x + 3}\)

     

    Aufgabe 2

    Abbildung zu Aufgabe 2 Klausur Q11/2-002

    Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

    c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

     

    Aufgabe 3

    Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

    b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

     

    Aufgabe 4

    Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    Geben Sie an, welcher der Graphen I, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

    Abbildung zu Aufgabe 4 Klausur Q11 2 002

     

    Aufgabe 5

    An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    Abbildung zu Aufgabe 5 Klausur Q11 2 002

     

    a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

    b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

    Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

    c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

    d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

    e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

     

    Aufgabe 6

    Der Punkt \(A(4|-1|0)\) ist Mittelpunkt der Kugel \(K\), auf deren Oberfläche der Punkt \(B(-1|1|4)\) liegt. 

    Ermitteln Sie die Koordinaten eines weiteren Punktes \(C\), der ebenfalls auf der Kugeloberfläche liegt.

  • Gegeben ist die Funktion \(f\,\colon x \mapsto 2 - \sqrt{12-2x}\) mit maximaler Definitionsmenge \(D_f = \; ]-\infty;6]\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_f\) mit den Koordinatenachsen. Bestimmen Sie das Verhalten von \(f\) für \(x \to -\infty\) und geben Sie \(f(6)\) an.

    (5 BE)

  • Geben Sie \(f(-2)\) an und zeichnen Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein (Platzbedarf im Hinblick auf die folgenden Aufgaben: \(-3 \leq y \leq 7\)).

    (3 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_{g}\) im Schnittpunkt von \(G_{g}\) mit der \(x\)-Achse.

    (4 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = \dfrac{(3 + x)^{2}}{x - 1}\) und maximalem Definitionsbereich \(D\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Geben Sie \(D\) und die Koordinaten der Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen an.

    (3 BE)

  • Für einen bestimmten Wert von \(k\) besitzt \(G_{k}\) zwei Schnittpunkte mit der \(x\)-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

    (3 BE)