Stochastik II

  • Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

    \(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

    (5 BE)

  • Die Zufallsgröße \(X\) beschreibt, wie oft der Mechanismus beim Schließen des Vorhangs im Verlauf einer Aufführung nicht funktioniert. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert von \(X\) um mehr als eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (5 BE)

  • Beschreiben Sie das Ereignis \(\overline{R} \cup \overline{V}\) im Sachzusammenhang und bestimmen Sie die Wahrscheinlichkeit dieses Ereignisses.

    (4 BE)

  • Nachdem die Verfilmung eines bekannten Romans erfolgreich in den Kinos gezeigt wurde, veröffentlicht eine Tageszeitung das Ergebnis einer repräsentativen Umfrage unter Jugendlichen. Der Umfrage zufolge hatten 88 % der befragten Jugendlichen den Roman zum Zeitpunkt des Kinostarts noch nicht gelesen, 18 % sahen die Verfilmung. Von den Befragten, die laut Umfrage den Roman zum Zeitpunkt des Kinostrats bereits gelesen hatten, gaben 60 % an, die Verfilmung gesehen zu haben.

    Betrachtet werden folgende Ereignisse:

    \(R\,\): "Eine aus den Befragten zufällig ausgewählte Person hatte laut Umfrage den Roman zum Zeitpunkt des Kinostarts bereits gelesen."

    \(V\,\): "Eine aus den Befragten zufällig ausgewählte Person sah laut Umfrage die Verfilmung."

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass eine aus den Befragten zufällig ausgewählte Person, die laut Umfrage den Roman zum Zeitpunkt des Kinostarts noch nicht gelesen hatte, angab, die Verfilmung gesehen zu haben.

    (5 BE)

  • Der Kurs Theater und Film eines Gymnasiums führt die Bühnenversion des Romans auf.

    Für die Premiere wird die Aula der Schule bestuhlt; in der ersten Reihe werden acht Plätze für Ehrengäste reserviert. Bestimmen Sie die Anzahl der Möglichkeiten, die die fünf erschienenen Ehrengäste haben, sich auf die reservierten Plätze zu verteilen, wenn

    α) die Personen nicht unterschieden werden;

    β) die Personen unterschieden werden.

    Nennen Sie im Sachzusammenhang einen möglichen Grund dafür, dass die möglichen Anordnungen der Ehrengäste auf den reservierten Plätzen nicht gleichwahrscheinlich sind - unabhängig davon, ob die Personen unterschieden werden oder nicht

    (4 BE)

  • Ein Jahr später möchte die Tageszeitung ermitteln, ob sich durch die Verfilmung der Anteil \(p\) der Jugendlichen, die den Roman gelesen haben, wesentlich erhöht hat. Die Nullhypothese \(H_0 \colon p \leq 0{,}15\) soll mithilfe einer Stichprobe von 100 Jugendlichen auf einem Signifikanzniveau von 10 % getestet werden. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Bei einer Routineinspektion wird die Passagierkabine eines zufällig ausgewählten Flugzeugs des Typs X überprüft. Ein Mangel der Beleuchtung sowie ein Mangel der Klimaanlage liegen bei Flugzeugen dieses Typs jeweils mit einer bestimmten Wahrscheinlichkeit vor; diese Wahrscheinlichkeiten können der folgenden Vierfeldertafel entnommen werden.

    Vierfeldertafel zu Teilaufgabe 3a - Stichhastik II - G8 Mathematik Abitur Bayern 2011

    \(B\): Beleuchtung einwandfrei

    \(\overline{B}\): Beleuchtung mangelhaft

    \(K\): Klimaanlage einwandfrei

    \(\overline{K}\): Klimaanlage mangelhaft

    Bestimmen Sie den Wert von \(x\) und beschreiben Sie das zugehörige Ereignis in Worten.

    (3 BE)

  • Bei Flugzeugen eines anderen Typs Y liegt ein Mangel der Klimaanlage mit einer Wahrscheinlichkeit von 4 % vor. Die Wahrscheinlichkeit dafür, dass mindestens einer der beiden Mängel vorliegt, beträgt 5 %. Wenn mindestens einer der beiden Mängel vorliegt, so funktioniert mit einer Wahrscheinlichkeit von 40 % die Beleuchtung nicht einwandfrei. Stellen Sie zu der für Flugzeuge des Typs Y beschriebenen Situation eine vollständig ausgefüllte Vierfeldertafel auf.

    (5 BE)

  • Beschreiben Sie ein Urnenexperiment, mit dem sich das Verhalten des Mechanismus bei 15-maligem Schließen des Vorhangs simulieren lässt.

    (2 BE)

  • Die Fluggesellschaft hätte für den Test - bei gleichem Signifikanzniveau - anstelle der Nullhypothese

    "Höchstens 15 % der Passagiere wünschen das Angebot eines Premiummenüs."

    auch die Nullhypothese

    "Mehr als 15 % der Passagiere wünschen das Angebot eines Premiummenüs."

    wählen können. Bei der Wahl der Nullhypothese stand für die Fluggesellschaft eine der beiden folgenden Überlegungen im Vordergrund

    • Der irrtümliche Verzicht auf das Angebot des Premiummenüs wäre mit einem Imageverlust verbunden.

    • Das irrtümliche Angebot des Premiummenüs wäre mit einem finaziellen Verlust verbunden.

    Entscheiden Sie, welche der beiden Überlegungen für die Fluggesellschaft bei der Wahl der Nullhypothese im Vordergrund stand. Erläutern Sie Ihre Entscheidung.

    (3 BE)

  • Mit welcher Wahrscheinlichkeit liegt bei dem zufällig ausgewählten Flugzeug des Typs X ein Mangel der Klimaanlage vor, wenn die Beleuchtung nicht einwandfrei funktioniert?

    (3 BE)

  • In einer Großstadt steht die Wahl des Oberbürgermeisters bevor. 12 % der Wahlberechtigten sind Jungwähler, d.h. Personen im Alter von 18 bis 24 Jahren. Vor Beginn des Wahlkampfs wird eine repräsentative Umfrage unter den Wahlberechtigten durchgeführt. Der Umfrage zufolge haben sich 44 % der befragten Wahlberechtigten bereits für einen Kandidaten entschieden. Jeder Siebte derjenigen Befragten, die sich noch nicht für einen Kandidaten entschieden haben, ist Jungwähler.

    Betrachtet werden folgende Ereignisse:

    \(J\): „Eine aus den Befragten zufällig ausgewählte Person ist Jungwähler."

    \(K\): „Eine aus den Befragten zufällig ausgewählte Person hat sich bereits für einen Kandidaten entschieden."

    Erstellen Sie zu dem beschriebenen Sachzusammenhang eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Zeigen Sie, dass \(P_J(\overline{K}) > P_{\overline{J}}(\overline{K})\) gilt.

    Begründen Sie, dass es trotz der Gültigkeit dieser Ungleichung nicht sinnvoll ist, sich im Wahlkampf vorwiegend auf die Jungwähler zu konzentrieren.

    (4 BE)

  • Der Kandidat der Partei A spricht an einem Tag während seines Wahlkampfs 48 zufällig ausgewählte Wahlberechtigte an. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau sechs Jungwähler befinden. 

    (3 BE)

  • Begründen Sie, dass die Wahl der Nullhypothese für den beschriebenen Test in Einklang mit dem Anliegen der Wahlkampfberaterin steht, einen Erfolg bereits im ersten Wahlgang zu erreichen. 

    (3 BE)

  • Nach der Wahl darf die Partei A in einem Ausschuss drei Sitze besetzen. Von den acht Stadträtinnen und vier Stadträten der Partei A, die Interesse an einem Sitz in diesem Ausschuss äußern, werden drei Personen per Losentscheid als Ausschussmitglieder bestimmt.

    Die Zufallsgröße \(X\) beschreibt die Anzahl der weiblichen Ausschussmitglieder der Partei A. Abbildung 1 zeigt die Wahrscheinlichkeitsverteilung der Zufallsgröße \(X\) mit \(P(X = 0) = \frac{1}{55}\) und \(P(X = 3) = \frac{14}{55}\).

    Abbildung 1Abb. 1

    Abbildung 2Abb. 2

     

    Berechnen Sie die Wahrscheinlichkeiten \(P(X = 1)\) und \(P(X = 2)\).

    (Ergebnis: \(P(X = 1) = \frac{12}{55}\), \(P(X = 2) = \frac{28}{55}\))

    (4 BE)

  • Bestimmen Sie Erwartungswert und Varianz der Zufallsgröße \(X\).

    (Ergebnis: \(E(X) = 2\), \(Var(X) = \frac{6}{11}\))

    (3 BE)

  • Abbildung 2 zeigt die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße \(Y\) mit den Parametern \(n = 3\) und \(p = \frac{2}{3}\). Zeigen Sie rechnerisch, dass \(Y\) den gleichen Erwartungswert wie die Zufallsgröße \(X\), aber eine größere Varianz als \(X\) besitzt.

    Erläutern Sie, woran man durch Vergleich der Abbildungen 1 und 2 erkennen kann, dass \(Var(Y) > Var(X)\) gilt.

    (4 BE)

  • Der Umfrage zufolge hätte der Kandidat der Partei A etwa 50 % aller Stimmen erhalten, wenn die Wahl zum Zeitpunkt der Befragung stattgefunden hätte. Ein Erfolg im ersten Wahlgang, für den mehr als 50 % aller Stimmen erforderlich sind, ist demnach fraglich. Deshalb rät die von der Partei A eingesetzte Wahlkampfberaterin in der Endphase des Wahlkampfs zu einer zusätzlichen Kampagne. Der Schatzmeister der Partei A möchte die hohen Kosten, die mit einer zusätzlichen Kampagne verbunden wären, jedoch möglichst vermeiden.

    Um zu einer Entscheidung über die Durchführung einer zusätzlichen Kampagne zu gelangen, soll die Nullhypothese „Der Kandidat der Partei A würde gegenwärtig höchstens 50 % aller Stimmen erhalten." mithilfe einer Stichprobe von 200 Wahlberechtigten auf einem Signifikanzniveau von 5 % getestet werden. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Auf der Strecke München-Tokio bietet eine Fluggesellschaft ihren Passagieren verschiedene Menüs an, darunter ein vegetarisches. Aus Erfahrung weiß man, dass sich im Mittel 10 % der Passagiere für das vegetarische Menü entscheiden. Im Folgenden soll davon ausgegangen werden, dass die Passagiere ihre jeweilige Menüauswahl unabhängig voneinander treffen.

    Auf einem Flug nach Tokio sind 200 Passagiere an Bord. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich mindestens 20 und höchstens 25 Passagiere für das vegetarische Menü entscheiden.

    (4 BE)

Seite 1 von 2