Vektorprodukt

  • Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

     

    a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

    b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

    c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

    d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

    e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

    f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

  • Aufgabe 1

    Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

     

    a) \(f(x) = -2\cos{(3- x)}\)

    b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

    c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

     

    Aufgabe 2

    Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

     

    a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

    b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

     

    Aufgabe 3

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

     

    a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

    b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

    c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

    d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

     

    Aufgabe 4

    Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

     

    a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

    b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

    c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

     

    Aufgabe 5

    Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

     

    a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

    b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

    c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

    d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

    e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

    f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

  • Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} -5 \\ -2 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) und \(h \colon \overrightarrow{X} = \begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}; \; \mu \in \mathbb R\).

    a) Weisen Sie nach, dass sich die Geraden \(g\) und \(h\) im Punkt \(S(-3|-1|4)\) schneiden.

    b) Geben Sie eine Gleichung der von den Geraden \(g\) und \(h\) aufgespannten Ebene \(E\) in Parameterform an und bestimmen Sie ein Gleichung der Ebene \(E\) in Normalenform.

  • Aufgabe 1

    Bestimmen Sie die folgenden unbestimmten Integrale:

    a) \(\displaystyle \int 5x^{2} \cdot e^{x^{3}} dx\)

    b) \(\displaystyle \int \frac{2}{3}x \cdot \frac{2}{x^{2} + 2} dx\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \frac{1}{2}x \cdot e^{1 - x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie die Funktion \(f\) auf Nullstellen und bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs.

    b) Berechnen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \frac{1}{2}e^{1 - x}(1 - x)\))

    c) Untersuchen Sie das Krümmungsverhalten von \(G_{f}\) und geben Sie die Koordinaten des Wendepunkts an. Bestimmen Sie die Gleichung der Wendetangente \(w\).

    (zur Kontrolle: \(f''(x) = \frac{1}{2}e^{1 - x}(x - 2)\))

    d) Skizzieren Sie \(G_{f}\) sowie die Wendetangente \(w\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    e) Weisen Sie nach, dass die Funktion \(F\colon x \mapsto -\frac{1}{2}e^{1 - x}(x + 1)\) eine Stammfunktion der Funktion \(f\) ist.

    f) Der Graph \(G_{f}\) und die Wendetangente \(w\) schließen im ersten Quadranten ein Flächenstück mit dem Flächeninhalt \(A\) ein. Schraffieren Sie dieses Flächenstück in der Skizze aus Teilaufgabe d und berechnen Sie den Flächeninhalt \(A\).

    g) Berechnen Sie das Integral \(\displaystyle \int_{0}^{+\infty} f(x) dx\) und geben Sie die geometrische Bedeutung des Ergebnisses an.

     

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto 1 - (\ln{x})^{2}\). Die Funktion \(F \colon x \mapsto x(\ln{x} - 1)^{2}\) ist eine Stammfunktion der Funktion \(f\) (Nachweis nicht erforderlich!).

    Bestimmen Sie die untere Grenze \(a \in \mathbb R^{+}\) der in \(\mathbb R^{+}\) definierten Integralfunktion \(\displaystyle I \colon x \mapsto \int_{a}^{x} f(t) dt\) so, dass diese mit \(F(x)\) übereinstimmt.

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

    a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Gerade liegen.

    b) Eine Gleichung der Gerade \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].

     

    Aufgabe 5

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} -5 \\ -2 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) und \(h \colon \overrightarrow{X} = \begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}; \; \mu \in \mathbb R\).

    a) Weisen Sie nach, dass sich die Geraden \(g\) und \(h\) im Punkt \(S(-3|-1|4)\) schneiden.

    b) Geben Sie eine Gleichung der von den Geraden \(g\) und \(h\) aufgespannten Ebene \(E\) in Parameterform an und bestimmen Sie ein Gleichung der Ebene \(E\) in Normalenform.

  • Die Punkte \(A(0|2|2)\), \(B(2|3|0)\) und \(C(0|-2|4)\) legen die Ebene \(E\) fest.

    a) Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_{1} + 2x_{2} + 4x_{3} = 12\))

    b) Ermitteln Sie die Koordinaten der Schnittpunkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) der Ebene \(E\) mit der \(x_{1}\)-, \(x_{2}\)- bzw. \(x_{3}\)-Achse und veranschaulichen Sie die Lage der Ebene \(E\) in einem kartesischen Koordinatensystem.

    c) Bestimmen Sie eine Gleichung der Schnittgeraden \(s\) der Ebene \(E\) und der \(x_{2}x_{3}\)-Ebene.

    d) Berechnen Sie die Koordinaten des Punktes \(S'\), der durch Spiegelung des Punktes \(S_{1}\) an der Geraden \(s\) hervorgeht.

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

     

    Aufgabe 2

    Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

     

    Aufgabe 3

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

     

    Aufgabe 4

    Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

     

    Aufgabe 5

    Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Der Würfel wird entlang der Ebene \(L\) geteilt. Berechnen Sie das Volumen der entstehenden Pyramide. Geben Sie an, wie viel Prozent des Würfelvolumens die Pyramide einnimmt. 

    (4 BE)

  • Die Abbildung zeigt einen Würfel der Kantenlänge 6. Die Koordinaten der Eckpunkte \(A\,(0|0|0)\), \(D\,(0|6|0)\) und \(G\,(6|6|6)\) sind gegeben.

    Abbildung zur Aufgabengruppe Geometrie 2, Würfel der Kantenlänge 6

    Die Punkte \(B\), \(E\) und \(G\) liegen in einer Ebene \(L\). Bestimmen Sie eine Gleichung von \(L\) in Normalenform. Zeichnen Sie die Figur, in der die Ebene \(L\) den Würfel schneidet, in die Abbildung ein.

    (mögliches Ergebnis: \(L\,\colon\; x_1 - x_2 + x_3 = 6\))

    (5 BE)

  • Die Vektoren \(\overrightarrow{a} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}\), \(\overrightarrow{b} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}\) und \(\overrightarrow{c_t} = \begin{pmatrix} 4t \\ 2t \\ -5t \end{pmatrix}\) spannen für jeden Wert \(t\) mit \(t \in \mathbb R \,\backslash\,\{0\}\) einen Körper auf. Die Abbildung zeigt den Sachverhalt beispielhaft für einen Wert von \(t\).

    Zeigen Sie, dass die aufgespannten Körper Quader sind.

    Abbildung zu Teilaufgabe 1

     (2 BE)

Seite 1 von 3