Verschiebung von Funktionsgraphen

  • Gegeben ist die Funktion \(f\) mit \(f(x) = -\dfrac{3}{x - 2}\).

    a) Bestimmen Sie \(\lim \limits_{x\,\to\,-\infty}f(x)\) und \(\lim \limits_{x\,\to\,+\infty}f(x)\). Beschreiben Sie Ihre Ergebnisse in Worten und interpretieren Sie diese graphisch.

    b) Der Graph der Funktion \(g\) geht aus dem Graphen der Funktion \(f\) durch Verschiebung in \(x\)-Richtung und in \(y\)-Richtung hervor, wobei er die Asymptoten mit den Gleichungen \(x = 3\) und \(y = -2\) besitzt. Geben Sie die zugehörige Verschiebung in \(x\)-Richtung und in \(y\)-Richtung an sowie einen Funktionsterm von \(g\).

    c) Der Graph der Funktion \(h\) entsteht aus dem Graphen der Funktion \(f\) durch eine Streckung mit dem Faktor \(3\) in \(y\)-Richtung und eine anschließende Verschiebung um \(2\) in \(y\)-Richtung. Der Graph der Funktion \(k\) entsteht aus dem Graphen der Funktion \(f\) durch die angegebene Streckung und Verschiebung in umgekehrter Reihenfolge. Entscheiden Sie, ob folgende Aussage richtig ist: „Die Funktionsterme von \(h\) und \(k\) unterscheiden sich." Begründen Sie ihre Entscheidung.

  • Aufgabe 1

    Gegeben ist die Funktion \(f\) mit \(f(x) = -\dfrac{3}{x - 2}\).

    a) Bestimmen Sie \(\lim \limits_{x\,\to\,-\infty}f(x)\) und \(\lim \limits_{x\,\to\,+\infty}f(x)\). Beschreiben Sie Ihre Ergebnisse in Worten und interpretieren Sie diese graphisch.

    b) Der Graph der Funktion \(g\) geht aus dem Graphen der Funktion \(f\) durch Verschiebung in \(x\)-Richtung und in \(y\)-Richtung hervor, wobei er die Asymptoten mit den Gleichungen \(x = 3\) und \(y = -2\) besitzt. Geben Sie die zugehörige Verschiebung in \(x\)-Richtung und in \(y\)-Richtung an sowie einen Funktionsterm von \(g\).

    c) Der Graph der Funktion \(h\) entsteht aus dem Graphen der Funktion \(f\) durch eine Streckung mit dem Faktor 3 in \(y\)-Richtung und eine anschließende Verschiebung um 2 in \(y\)-Richtung. Der Graph der Funktion \(k\) entsteht aus dem Graphen der Funktion \(f\) durch die angegebene Streckung und Verschiebung in umgekehrter Reihenfolge. Entscheiden Sie, ob folgende Aussage richtig ist: „Die Funktionsterme von \(h\) und \(k\) unterscheiden sich." Begründen Sie ihre Entscheidung.

     

    Aufgabe 2

    Graph einer Funktion f, Auf Stetigkeit zu beurteilende Stellen x₁,x₂ und x₃

    a) Die Abbildung zeigt den Graphen einer Funktion \(f\). Erläutern Sie anhand des Graphen, ob die Funktion \(f\) an den Stellen \(x_1\), \(x_2\) und \(x_3\) jeweils stetig ist.

    b) Gegeben ist die Funktion

    \[g \colon x \mapsto \begin{cases} \begin{align*} &ax + a &&\text{für} \; x < 1 \\[0.8em] &-2 &&\text{für}\;1 \leq x < 5 \\[0.8em] &b \cdot (x^3 - 10x^2 + 25x)-2 &&\text{für}\;x \geq 5 \end{align*} \end{cases}\enspace\text{mit}\;a, b \in \mathbb R\]

    Bestimmen Sie den Wert von \(a\) so, dass \(g\) an der Stelle \(x = 1\) stetig ist und zeigen Sie, dass \(g\) an der Stelle \(x = 5\) unabhängig vom Wert von \(b\) stetig ist.

      

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x(x-3)}{(x-2)^2}\) mit maximaler Definitionsmenge \(D_f\).

    a) Geben Sie \(D_f\) an und entscheiden Sie, welcher der Graphen I bis IV den Graphen der Funktion \(f\) darstellt. Begründen Sie Ihre Entscheidung.

    Klausur Q11/1-005 Aufgabe1 Graph I

    Klausur Q11/1-005 Aufgabe1 Graph II

     

    Klausur Q11/1-005 Aufgabe1 Graph III

    Klausur Q11/1-005 Aufgabe1 Graph IV

    b) Graph IV zeigt den Graphen einer gebrochenrationalen Funktion \(g\), der eine schräge Asymptote mit der Gleichung \(y = -x + 4\) besitzt. Die Koordinaten der Schnittpunkte des Graphen von \(g\) mit den Koordinatenachsen sowie die Polstelle von \(g\) sind ganzzahlig.

    Geben Sie an, welcher der folgenden Funktionsterme die Funktion \(g\) beschreibt.

    \[\text{A}\quad\frac{1}{x - 2} -x +4\]

    \[\text{B}\quad-\frac{1}{x-2} -x +4\]

    \[\text{C}\quad\frac{1}{2-x} +x - 4\]

    \[\text{D}\quad\frac{1}{2-x}-x-4\]

     

    Aufgabe 4

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{-2x-4}{x^3+6x^2+9x}\) mit maximaler Definitionsmenge \(D_f\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    a) Geben Sie die Nullstelle von \(f\) an. Untersuchen Sie \(f\) auf Polstellen und geben Sie \(D_f\) an. Bestimmen Sie das Verhalten von \(G_f\) an den Definitionslücken.

    b) Untersuchen Sie \(G_f\) auf schräge oder waagrechte Asymptoten.

    c) Berechnen Sie \(f(-4)\) und \(f(1)\) und zeichnen Sie \(G_f\) im Bereich \(-7 < x < 4\) in ein Koordinatensystem.

     

    Aufgabe 5

    a) Bestimmen Sie den Grenzwert \(\lim \limits_{x\,\to\,2} f(x)\) mit \(f(x) = \dfrac{4x^2-6x-4}{x-2}\).

    (Zwischenergebnis: \(x = 2\) ist Nullstelle von \(f\))

    b) Die Grenzwertbetrachtung lässt auf eine besondere Eigenschaft der gebrochrationalen Funktion \(f\) schließen. Geben sie diese an und beschreiben Sie kurz wie sich der Graph von \(f\) an der Stelle \(x = 2\) verhält.

     

    Aufgabe 6

    Beim Fernsehsender „Sport TV" treten bei Live-Übertragungen mit einer Wahrscheinlichkeit von 4 % Bildstörungen auf. Wenn das Bild gestört ist, kommt es mit einer Wahrscheinlichkeit von 60 % auch zu Tonstörungen. Bei 13,6 % der Übertragungen kommt es zu Bild- oder Tonstörungen.

    Betrachte werden folgende Ereignisse:

    \(B\): „Es tritt eine Bildstörung bei der Live-Übertragung auf",

    \(T\): „Es tritt eine Tonstörung bei der Live-Übertragung auf".

    a) Zeigen Sie, dass bei 12 % aller Live-Übertragungen Tonstörungen auftreten.

    b) Berechnen Sie die Wahrscheinlichkeit dafür, dass bei einer Live-Übertragung

    1. ein einwandfreies Bild empfangen wird, falls der Ton gestört ist.
    2. Bild oder Ton einwandfrei empfangen werden.

    c) Untersuchen Sie, ob die Ereignisse \(B\) und \(T\) stochastisch unabhängig sind.

  • Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

  • Abbildung Aufgabe 1 Klausur Q12/2-001

    Die Abbildung zeigt je einen Ausschnitt des Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto \sqrt{x + 2} - 2\) und des Graphen \(G_{g}\) der Funktion \(g \colon x \mapsto -\sqrt{4 - x} + 4\).

    a) Beschreiben Sie schrittweise wie der Graph \(G_{f}\) und der Graph \(G_{g}\) jeweils aus dem Graphen der Funktion \(x \mapsto \sqrt{x}\) hervorgeht und bestimmen Sie jeweils die maximale Definitionsmenge der Funktionen \(f\) und \(g\) durch Rechnung.

    Betrachtet wird die Strecke \([PQ]\) der Punkte \(P(x|f(x))\) und \(Q(x|g(x))\) mit derselben Abszisse.

    b) Zeigen Sie, dass der Funktionsterm \(d(x) = -\sqrt{4 - x} -\sqrt{x + 2} + 6\) die Länge der Strecke \([PQ]\) in Abhängigkeit der \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\) beschreibt, und geben Sie die Definitionsmenge der Funktion \(d\) an.

    c) Bestimmen Sie die \(x\)-Koordinate des Punktes \(P\) bzw. \(Q\), für die die Länge der Strecke \([PQ]\) minimal ist.

    Die Gerade \(x = -1\) und die Gerade \(x = 3\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein.

    d) Der Flächeninhalt \(A\) soll zunächst näherungsweise berechnet werden. Hierfür wird das Viereck \(SPQR\) betrachtet, welches die Punkte \(S(-1|f(-1))\), \(P(3|f(3))\), \(Q(3|g(3))\) und \(R(-1|g(-1))\) festlegen. Der Schnittpunkt der Strecken \([PR]\) und \([QS]\) halbiert die Strecken jeweils.

    Zeichnen Sie das Viereck \(SPQR\) in die Abbildung ein und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie die wesentlichen Schritte eines geeigneten Lösungsverfahrens, um \(A\) näherungsweise zu berechnen.

    e) Berechnen Sie den exakten Wert des Flächeninhalts \(A\).

    f) Betrachtet wird nun die Integralfunktion \(\displaystyle I \colon x \mapsto \int_{0}^{x} d(t) dt\).

    Geben Sie an, welche der folgenden Terme die Maßzahl des Flächeninhalts \(A\) berechnen (Falsche Antworten zählen negativ).

      (I)  \(I(-1) + I(3)\)

     (II)  \(I(-1) - I(3)\)

    (III)  \(I(3) - I(-1)\)

    (IV)  \(\vert I(-1) \vert - \vert I(3) \vert\)

     (V)  \(\vert I(-1) \vert + I(3)\)

    (VI)  \(I(-1) + \vert I(3) \vert\)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Die Funktion \(h\) hat den Wertebereich \([1;3]\).

    (1 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.

    (2 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

  • Die in \(\mathbb R \, \backslash \, \{-3;-1\}\) definierte Funktion \(\displaystyle k \colon x \mapsto 3 \cdot \left( \frac{1}{x + 1} - \frac{1}{x + 3} \right) - 0{,}2\) stellt im Bereich \(-0{,}5 \leq x \leq 2\) eine gute Näherung für die Funktion \(h\) dar.

    Beschreiben Sie, wie der Graph der Funktion \(k\) aus dem Graphen der Funktion \(f\) aus Aufgabe 1 hervorgeht.

    (2 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)

  • Beschreiben Sie, wie \(G_{g}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}_{0}\) definierten Funktion \(w \colon x \mapsto \sqrt{x}\) hervorgeht, und geben Sie die Wertemenge von \(g\) an.

    (4 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto p + q \cdot \sin\left( \frac{\pi}{r}x \right)\) mit \(p,qr \in \mathbb N\).

    Abbildung Teilaufgabe 3a Analysis 2 Mathematik Abitur Bayern 2017 A

    Geben Sie \(p,q\) und \(r\) an.

    (3 BE)

  • Der Graph der Funktion \(h\) geht aus dem Graphen der Funktion \(g\) durch Verschiebung um zwei Einheiten in positive \(x\)-Richtung hervor. Geben Sie einen möglichen Funktionsterm von \(h\) an.

    (1 BE)

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion an, die eine Stammfunktion, aber keine Integralfunktion von \(f\) ist.

    (2 BE)

Seite 1 von 3