Quotientenregel

  • Zeigen Sie, dass \(G_{f}\) genau einen Wendepunkt \(W\) besitzt, und bestimmen Sie dessen Koordinaten sowie die Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

    (zur Kontrolle: \(x\)-Koordinate von \(W\): \(e\))

    (6 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^{2x}}{x}\) mit dem Definitionsbereich \(D_{f} = \mathbb R \backslash \{0\}\).

    Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.

    (5 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (5 BE)

  • Gegeben ist ferner die in \(]-1;+\infty[\) definierte Funktion \(F \colon x \mapsto 4 \cdot \ln{(x + 1)} + \dfrac{4}{x + 1}\).

    Zeigen Sie, dass \(F\) für \(x > -1\) eine Stammfunktion von \(f\) ist.

    (3 BE)

  • Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

    Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

    (zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

    (4 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Zeigen Sie, dass es einen Wert von \(k > 0\) gibt, für den \(A(k)\) maximal ist. Berechnen Sie diesen Wert von \(k\) sowie den Flächeninhalt des zugehörigen Dreiecks \(P_{k}Q_{k}R\).

    (6 BE)

  • Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

    (4 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

    (zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

    (5 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Zeigen Sie, dass der Graph von \(g\) in genau einem Punkt eine waagrechte Tangente besitzt.

    (3 BE)

  • Geben Sie einen Term der ersten Ableitungsfunktion von \(f\) an.

    (2 BE) 

  • Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

    (5 BE)

  • Weisen Sie rechnerisch nach, dass \(G_f\) in \(\mathbb R\) streng monoton steigt.

    (zur Kontrolle: \(f'(x)= \displaystyle \frac{18e^x}{(e^x + 9)^2}\))

    (3 BE)

  • Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an.

    \[g(x)= \frac{3}{x^2 - 1}\]

    (3 BE)

  • Bestimmen Sie den Term der Ableitung von \(f\).

    (2 BE)

  • Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

    (4 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\,\).

    (8 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [-2;2]\)

    (2 BE)

Seite 2 von 2