Berechnen Sie den Erwartungswert der Auszahlung pro Spiel, wenn der Gewinn einer Eintrittskarte mit einer Auszahlung von fünfzehn Euro gleichgesetzt wird. Interpretieren Sie das Ergebnis.
(4 BE)
Lösung zu Teilaufgabe 2b
Erwartungswert der Auszahlung pro Spiel
Zufallsgröße \(X\,\colon\enspace\)„Auszahlungsbetrag pro Spiel in Euro"
Trefferwahrscheinlichkeiten der Nummern des Glücksrads berechnen:
\[P(\text{Nummer 1}) = \frac{24^{\circ}}{360^{\circ}} = \frac{1}{15}\]
\[P(\text{Nummer 2}) = \frac{2 \cdot 24^{\circ}}{360^{\circ}} = \frac{2}{15}\]
\[P(\text{Nummer 3}) = \frac{3 \cdot 24^{\circ}}{360^{\circ}} = \frac{3}{15} = \frac{1}{5}\]
\[P(\text{Nummer 4}) = \frac{4 \cdot 24^{\circ}}{360^{\circ}} = \frac{4}{15}\]
\[P(\text{Nummer 5}) = \frac{2 \cdot 24^{\circ}}{360^{\circ}} = \frac{5}{15} = \frac{1}{3}\]
Wahrscheinlichkeitsverteilung der Zufallsgröße \(X\):
Nummer | 1 | 2 | 3 | 4 | 5 |
\(X = x_{i}\) | \(1\) | \(2\) | \(3\) | \(4\) | \(15\) |
\(P(X = x_{i})\) | \(\displaystyle \frac{1}{15}\) | \(\displaystyle \frac{2}{15}\) | \(\displaystyle \frac{1}{5}\) | \(\displaystyle \frac{4}{15}\) | \(\displaystyle \frac{1}{3}\) |
Erwartungswert der Zufallsgröße \(X\) berechnen:
Ist \(X\) eine Zufallsgröße, deren mögliche Werte \(x_{1}, x_{2}, ..., x_{n}\) sind, dann gilt:
Erwartungswert \(\boldsymbol{\mu}\) der Zufallsgröße \(\boldsymbol{X}\) (vgl. Merkhilfe)
\[\begin{align*}\mu = E(X) &= \sum \limits_{i = 1}^{n} x_{i} \cdot p_{i} \\[0.8em] &= x_{1} \cdot p_{1} + x_{2} \cdot p_{2} \,+\, ... \,+\, x_{n} \cdot p_{n} \end{align*}\]
Der Erwartungswert \(\boldsymbol{\mu}\) einer Zufallsgröße \(X\) gibt den Mittelwert der Zufallsgröße an, der bei oftmaliger Wiederholung eines Zufallsexperiments zu erwarten ist.
\[E(X) = 1 \cdot \frac{1}{15} + 2 \cdot \frac{2}{15} + 3 \cdot \frac{1}{5} + 4 \cdot \frac{4}{15} + 15 \cdot \frac{1}{3} = 7\]
Im Mittel beträgt der Auszahlungsbetrag pro Spiel 7 €.
Interpretation des Ergebnisses
Bei einem Eisatz von 6 € pro Spiel, macht ein Spieler im Mittel pro Spiel einen Gewinn von 1 €. Das Gewinnspiel des Supermarktes eignet sich deshalb nicht, um Geld für die Ausstattung des örtlichen Kindergartens einzunehmen.