Prüfungsteil B

  • Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).

    Abbildung zu Teilaufgabe 1 Stichhaltig 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt.

    Die Zufallsgröße \(X\) beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit \(p\) erzielt.

    Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.

    Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10 % erhält.

    (Ergebnis: \(2p - 2p^2\))

    (3 BE)

  • \(G_{f}\) und die \(x\)-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade \(g\) in zwei Teilflächen zerlegt wird. Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen. 

    (6 BE)

  • Beschreiben Sie, wie man mithilfe der Abbildung für eine Fahrt mit einer Gesamtfahrzeit zwischen zwei und vierzehn Stunden die zugehörige Eigengeschwindigkeit des Boots näherungsweise ermitteln kann. Berechnen Sie auf der Grundlage des Modells die Eigengeschwindigkeit des Boots für eine Fahrt mit einer Gesamtfahrzeit von vier Stunden.

    (5 BE)

  • Erstellen Sie zu dem beschriebenen Sachverhalt für den Fall, dass das Ereignis \(E\) mit einer Wahrscheinlichkeit von 98 % eintritt, eine vollständig ausgefüllte Vierfeldertafel. Bestimmen Sie für diesen Fall die Wahrscheinlichkeit \(P_{S}(M)\).

    (5 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

    Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

    Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

    Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    (5 BE)

  • Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

    Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

    (4 BE)

  • Der Graph von \(f\) soll durch eine Parabel näherungsweise dargestellt werden. Dazu wird die in \(\mathbb R\) definierte quadratische Funktion \(q\) betrachtet, deren Graph den Scheitelpunkt \((0|2)\) hat und durch den Punkt \((4|f(4))\) verläuft.

    Ermitteln Sie den Term \(q(x)\) der Funktion \(q\), ohne dabei zu Runden.

    (4 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den 100 befragten Jugendlichen genau 85 einen Computer besitzen, wenn der Anteil derjenigen Jugendlichen, die einen Computer besitzen, unter den Jugendlichen der Kleinstadt ebenso groß ist wie unter den in der Tabelle erfassten Jugendlichen.

    (3 BE)

  • Der Vortest kann als einseitiger Hypothesentest mit einem Signifikanzniveau von 3 % gedeutet werden. Geben Sie dazu die Nullhypothese sowie den Ablehnungsbereich an.

    (2 BE)

  • Jede Ebene, die parallel zu \(M\) verläuft, wird durch eine Gleichung der Form \(x_1 - x_2 + x_3 = p\) mit \(p \in \mathbb R\) beschrieben. Nennen Sie die Arten der Figuren, in denen eine solche Ebene den Würfel schneiden kann, und geben Sie die Menge aller Werte von \(p\) an, für die die Schnittfigur ein Sechseck ist.

    (4 BE)

  • Der Körper wird so um die Gerade \(AB\) gedreht, dass der mit \(D\) bezeichnete Eckpunkt nach der Drehung in der \(x_1x_2\)-Ebene liegt und dabei eine positive \(x_2\)-Koordinate hat. Die folgenden Rechnungen liefern die Lösung einer Aufgabe im Zusammenhang mit der Drehung:

    \(\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} \circ \left[ \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right] = 0 \; \Leftrightarrow \; \lambda = 0{,}8\), d. h. \(S(4{,}8|3{,}6|0)\)

    \(\overrightarrow{T} = \overrightarrow{S} + \vert \overrightarrow{CS} \vert \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)

    Formulieren Sie eine passende Aufgabenstellung und geben Sie die Bedeutung von \(S\) an.

    (3 BE) 

  • In einem kartesischen Koordinatensystem legen die Punkte \(A\,(4|0|0)\), \(B\,(0|4|0)\) und \(C\,(0|0|4)\) das Dreieck \(ABC\) fest, das in der Ebene \(E\,\colon \, x_1 + x_2 + x_3 = 4\) liegt.

    Bestimmen Sie den Flächeninhalt des Dreiecks \(ABC\).

    (3 BE)

  • Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorle-Flaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.

    Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05." auf einem Signifikanzniveau von 1 % durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.

    Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3 % der Saftschorle-Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.

    (7 BE)

  • Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind; machen Sie jeweils Ihre Entscheidung plausibel.

    α) \(\lim \limits_{x\,\to\,-\infty} q(x) = +\infty\)

    β) \(\lim \limits_{x\,\to\,+\infty} q(x) = 0\)

    (4 BE)

  • Ermitteln Sie, wie viel Prozent der Bevölkerung in der Altersgruppe der 25- bis 29-jährigen rauchen. Gehen Sie davon aus, dass zu dieser Altersgruppe gleich viele Frauen und Männer gehören.

    (2 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Zeigen Sie, dass für die zweite Ableitung \(f''\) von \(f\) die Beziehung \(f''(x) = \frac{1}{4} \cdot f(x)\) für \(x \in \mathbb R\) gilt. Weisen Sie nach, dass \(G_{f}\) linksgekrümmt ist.

    (zur Kontrolle: \(f'(x) = \frac{1}{2} \cdot \left( e^{\frac{1}{2}x} + e^{-\frac{1}{2}x} \right)\))

    (4 BE)

  • Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke \([AB]\) und den Viertelkreis von \(B\) nach \(C\) dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 \(\sf{\frac{m}{s}}\). Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht. 

    (4 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)