Abiturlösungen Mathematik Bayern 2020

Aufgaben mit ausführlichen Lösungen

Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1

(4 BE)

Lösung zu Teilaufgabe 2d

 

Arithmetisches Mittel der beiden Näherungswerte für \(F(1)\)

Näherungswert aus Teilaufgabe 2b: \(F(1) \approx -0{,}5\)

Näherungswert aus Teilaufgabe 2c: \(F(1) \approx -\dfrac{2}{\pi}\)

Arithmetisches Mittel

Arithmetisches Mittel (Durchschnitt)

\[\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n} = \frac{1}{n} \sum_{i\, =\, 1}^n \; x_i\]

Wobei \(x_i\) die zu berücksichtigenden Werte sind und \(n\) die Anzahl der Werte ist.

\[\frac{-0{,}5 + \left( -\frac{2}{\pi} \right)}{2} \approx -0{,}57\]

 

Skizzieren des Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse

Bisherige Ergebnisse:

● \(x = 0\) ist Nullstelle von \(F\) (vgl. Teilaufgabe 2a).

● Im Intervall \([1;3]\) hat \(F\) eine weitere Nullstelle bei \(x \approx 2{,}3\) (vgl. Teilaufgabe 2a)

● Der Punkt \((-1|F(-1))\) ist Hochpunkt von \(G_{F}\) (vgl. Teilaufgabe 2a). Analog lässt sich schlussfolgern, dass der Punkt \((1|F(1))\) Tiefpunkt von \(G_{f}\) ist. 

● \(F(1) \approx -0{,}57\) (vgl. oben)

Graph der Integralfunktion F im Bereich 0 ≤ x ≤ 3

Graph der Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) im Bereich \(0 \leq x \leq 3\)

 

Ausführliche Erklärung (nicht verlangt)

In Teilaufgabe 2a wurde erklärt, weshalb der Punkt \((-1|F(-1))\) ein Hochpunkt von \(G_{F}\) ist. Analog dazu lässt sich begründen, weshalb der Punkt \((1|F(1))\) ein Tiefpunkt von \(G_{F}\) ist.

Graph der Integralfunktion F im Bereich 0 ≤ x ≤ 3, Nullstellen x = 0 und x ≈ 2,3, Tiefpunkt (1|F(1))

Abbildung 1 bzw. dem Funktionsterm \(f(x) = \dfrac{x^{2} - 1}{x^{2} + 1}\) ist zu entnehmen, dass \(x = 1\) eine einfache Nullstelle von \(f\) ist.

 

\[f(x) = 0 \enspace \Rightarrow \enspace  x^{2} - 1 = 0 \enspace \Rightarrow \enspace x_{1,2} = \pm 1\]

Hauptsatz der Differential- und Integralrechnung

Hauptsatz der Differential- und Integralrechnung (HDI)

Jede Integralfunktion \(\displaystyle I_{a} \colon x \mapsto \int_{a}^{x} f(t)\, dt\) einer stetigen Funktion \(f\) ist eine Stammfunktion von \(f\).

\[I_{a}(x) = \int_{a}^{x} f(t)\, dt \quad \Longrightarrow \quad I'_{a}(x) = f(x)\]

(vgl. Merkhilfe)

Nach dem Hauptsatz der Differential- und Integralrechnung ist die Integralfunktion \(F\) eine Stammfunktion von f und es gilt somit:

Stammfunktion

Stammfunktion

Eine differenzierbare Funktion \(F(x)\) heißt eine Stammfunktion von \(f(x)\), wenn

\(F'(x) = f(x)\) mit \(D_{F} = D_{f}\)

gilt.

\[f(11) = F'(1) = 0\]

Monotoniekriterium

Anwendung der Differetialrechnung:

Monotoniekriterium

\(f'(x) < 0\) im Intervall \( I \quad \Longrightarrow \quad G_{f}\) fällt streng monoton in \(I\)

\(f'(x) > 0\) im Intervall \( I \quad \Longrightarrow \quad G_{f}\) steigt streng monoton in \(I\)

(vgl. Merkhilfe)

An der Nullstelle \(x = 1\) wechselt \(f(x) = F'(x)\) das Vorzeichen von \(-\) nach \(+\). Gemäß dem Monotoniekriterium wechselt demzufolge der Graph der Integralfunktion \(F\) an der Stelle \(x = 1\) das Monotonieverhalten von „streng monoton fallend" zu „streng monoton steigend". Also hat \(G_{F}\) an der Stelle \(x = 1\) den Tiefpunkt \(TiP(1|F(1))\).

Extrempunkte

Anwendung der Differentialrechnung:

Extrempunkte

Ist \(f'(x_{0}) = 0\) und wechselt \(f'\) an der Stelle \(x_{0}\) das Vorzeichen, so hat \(G_{f}\) an der Stelle \(x_{0}\) einen Extrempunkt.

(vgl. Merkhilfe)

\[\left. \begin{align*} &f(x) = F'(x) < 0 \enspace \text{für} \enspace x < 1 \\ &f(1) = F'(1) = 0 \\ &f(x) = F'(x) > 0 \enspace \text{für} \enspace x > 1 \end{align*} \right \} \enspace \Rightarrow \enspace \textcolor{#89ba17}{\text{Tiefpunkt} \; TiP\,(1|F(1))}\]