Gegeben ist die Funktion \(\displaystyle f \colon x \mapsto \frac{2x + 3}{x^2 + 4x + 3}\) mit maximaler Definitionsmenge \(D\). Bestimmen Sie \(D\) sowie die Nullstelle vom \(f\,\).

(3 BE)

Lösung zu Teilaufgabe 1

 

\[f(x) = \frac{2x + 3}{x^2 + 4x + 3}\]

 

Maximale Definitionsmenge \(D\) von \(f\)

Die Nullstellen des Nennerterms der gebrochenrationalen Funktion \(f\) schränken die Definitionsmenge ein.

Maximale Definitionsmenge bestimmen

Maximale Definitionsmenge bestimmen

Gebrochenrationale Funktion / Quotient von Funktionen

\[x \mapsto \dfrac{Zähler(x)}{\textcolor{#e9b509}{\underbrace{Nenner(x)}_{\Large{\neq \, 0}}}}\]

Nullstelle(n) des Nenners ausschließen!

Wurzelfunktion

\[x \mapsto \sqrt{\mathstrut\smash{\textcolor{#e9b509}{\underbrace{\dots}_{\Large{\geq\,0}}}}} \\ {}\]

Der Wert des Terms unter der Wurzel (Radikand ) darf nicht negativ sein!

(natürliche) Logarithmusfunktion

\(x \mapsto \ln{(\,\textcolor{#e9b509}{\underbrace{\dots}_{\Large{>\,0}}}\,)}\)  bzw.  \(x \mapsto \log_{a}{(\,\textcolor{#e9b509}{\underbrace{\dots}_{\Large{>\,0}}}\,)}\) 

Die (Natürliche) Logarithmusfunktion ist in \(\textcolor{#e9b509}{\mathbb R^{+}}\) definiert!

\[x^2 + 4x + 3 = 0\]

Lösungsformel für quadratische Gleichungen

Lösungsformel für quadratische Gleichungen (vgl. Merkhilfe)

\[ax^2 + bx + c = 0 \,, \qquad a, b, c \in \mathbb R \,, \quad a \neq 0\]

\[\begin{align*} x_{1,2} &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad b^2 \geq 4ac \\[0.8em] x_{1,2} &= \frac{-b \pm \sqrt{D}}{2a}, \quad D \geq 0 \end{align*}\]

Diskriminante \(D = b^2 -4ac \;\):

\(D < 0\,\): keine Lösung

\(D = 0\,\): genau eine Lösung

\(D > 0\,\): zwei verschiedene Lösungen

\[\begin{align*} x_{1,2} &= \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \\[0.8em] &= \frac{-4 \pm 2}{2} \end{align*}\]

 

\[x_1 = \frac{-4 - 2}{2} = -3\]

\[x_2 = \frac{-4 + 2}{2} = -1\]

 

\[\Rightarrow \enspace D_{f} = \mathbb R \, \backslash \, \{-3;-1\}\]

 

Nullstelle von \(f\)

Die Nullstelle der gebrochenrationalen Funktion \(f\) ist die Nullstelle des Zählers \(2x + 3\). welche nicht zugleich Nullstelle des Nenners sein darf (vgl. Anmerkung).

Nullstellen einer Funktion bestimmen

Nullstelle(n) einer Funktion bestimmen

Eine Nullstelle ist die \(x\)-Koordinate eines gemeinsamen Punktes des Graphen einer Funktion \(x \mapsto f(x)\) mit der \(x\)-Achse. An einer Nullstelle gilt: \(f(x) = 0\).

loading...
Produkt von Funktionen

Satz vom Nullprodukt: Ein Produkt ist genau dann null, wenn einer der Faktoren null ist.

\(f(x) \cdot g(x) = 0 \enspace \Rightarrow \enspace f(x) = 0\) oder \(g(x) = 0\)

Quotient von Funktionen

Ein Quotient von Funktionen ist genau dann null, wenn die Zählerfunktion null ist.

\(\dfrac{f(x)}{g(x)} = 0 \enspace \Rightarrow \enspace f(x) = 0\; (g(x) \neq 0)\)

Quadratische Funktion

Lösungsformel für quadratische Gleichungen (Mitternachtsformel, vgl. Merkhilfe)

 

\[\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x + \textcolor{#e9b509}{c} = 0 \enspace \Leftrightarrow \enspace x_{1,2} = \frac{-\textcolor{#0087c1}{b} \pm \sqrt{\textcolor{#0087c1}{b}^2 - 4\textcolor{#cc071e}{a}\textcolor{#e9b509}{c}}}{2\textcolor{#cc071e}{a}}\]

 

Diskriminante \(D = b^2 -4ac \;\):

\(D < 0\,\): keine Lösung

\(D = 0\,\): genau eine Lösung

\(D > 0\,\): zwei verschiedene Lösungen

 

Folgende Fälle lassen sich einfacher durch Umformung lösen:

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x &= 0 &&| \; x\; \text{ausklammern (Produkt formulieren)} \\[0.8em] x \cdot (ax + b) &= 0 \\[0.8em] \Rightarrow \enspace x = 0 \vee ax + b &= 0 \end{align*}\]

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#e9b509}{c} &= 0 &&| -c \enspace (c \neq 0) \\[0.8em] ax^2 &= -c &&| : a \\[0.8em] x^2 &= -\frac{c}{a} &&| \; \sqrt{\quad} \\[0.8em] x_{1,2} &= \pm \sqrt{-\frac{c}{a}} \end{align*}\]

Zwei Lösungen, falls \(-\dfrac{c}{a} > 0\), keine Lösung, falls \(-\dfrac{c}{a} < 0\)

Ganzrationale Funktion

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3:

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3

vgl. Abiturskript - 1.1.3 Ganzrationale Funktion, Nullstellen

Gebrochenrationale Funktion

Nullstellen einer gebrochenrationalen Funktion \(f(x) = \dfrac{\textcolor{#0087c1}{z(x)}}{n(x)}\) sind alle Nullstellen des Zählerpolynoms \(\textcolor{#0087c1}{z(x)}\), die nicht zugleich Nullstellen des Nennerpolynoms \(\boldsymbol{n(x)}\) sind.

Ist \(x_0\) eine Nullstelle des Zählerpolynoms \(\boldsymbol{z(x)}\) und zugleich eine vollständig kürzbare Nullstelle des Nennerpolynoms \(\boldsymbol{n(x)}\), so besitzt die gebrochenrationale Funktion \(f\) an der Stelle \(x_0\) eine hebbare Definitionslücke.

(vgl. Abiturskript - 1.2.1 Gebrochenrationale Funktion, Nullstellen und Polstellen)

Wurzelfunktion

Eine Wurzelfunktion \(f(x) = \sqrt{\textcolor{#cc071e}{g(x)}}\) nimmt genau dann den Wert null an, wenn der Radikand (Term unter der Wurzel) null ist.

Sinus- und Kosinusfunktion

\[\sin{x} = 0 \enspace \Rightarrow \enspace x = k \cdot \pi \; (k \in \mathbb Z)\]

\[\cos{x} = 0 \enspace \Rightarrow \enspace x = \dfrac{\pi}{2} + k \cdot \pi \; (k \in \mathbb Z)\]

Nullstellen der Sinusfunktion x ↦ sin x und der Kosinusfunktion x ↦ cos x

Natürliche Logarithmusfunktion

Nullstelle x = 1 der natürlichen Logarithmusfunktion

Die natürliche Logarithmusfunktion \(x \mapsto \ln{x}\) besitzt die einzige Nullstelle \(\boldsymbol{x = 1}\).

\[\ln{\left( \textcolor{#0087c1}{f(x)} \right)} = 0 \enspace \Rightarrow \enspace \textcolor{#0087c1}{f(x) = 1}\]

Natürliche Exponentialfunktion

Graph der natürlichen Exponentialfunktion x → eˣ

Die natürliche Exponentialfunktion \(x \mapsto e^x\) sowie jede verkettete Funktion \(x \mapsto e^{f(x)}\) besitzt keine Nullstelle!

 

\[\begin{align*} f(x) &= 0 \\[0.8em] \Rightarrow \enspace 2x + 3 &= 0 & &| -3 \\[0.8em] 2x &= -3 & &| :2 \\[0.8em] x &= -\frac{3}{2} \end{align*}\]

 

Anmerkung:

Ist \(x_0\) eine Nullstelle der Zählerfunktion \(\boldsymbol{z(x)}\) und zugleich eine vollständig kürzbare Nullstelle der Nennerfunktion \(\boldsymbol{n(x)}\), so besitzt eine gebrochnrationale Funktion \(f \colon x \mapsto \dfrac{z(x)}{n(x)}\) an der Stelle \(x_0\) eine hebbare Definitionslücke.

(vgl. Abiturskript - 1.2.1 Gebrochenrationale Funktion, Nullstellen und Polstellen)