Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x^2 + 2x}{x+1}\) mit maximaler Definitionsmenge \(D_f\). Geben Sie \(D_f\) und die Nullstellen von \(f\) an

(2 BE) 

Lösung zu Teilaufgabe 1a

 

\[f(x) = \frac{x^2 + 2x}{x + 1}\]

 

Maximale Definitionsmenge: \(D_f = \mathbb R \backslash \{-1\}\)

Nullstellen: \(x = 0\) und \(x = -2\)

 

Ausführliche Erklärung (nicht verlangt)

Maximale Definitionsmenge \(D_f\)

Maximale Definitionsmenge bestimmen

Maximale Definitionsmenge bestimmen

Gebrochenrationale Funktion / Quotient von Funktionen

\[x \mapsto \dfrac{Zähler(x)}{\textcolor{#e9b509}{\underbrace{Nenner(x)}_{\Large{\neq \, 0}}}}\]

Nullstelle(n) des Nenners ausschließen!

Wurzelfunktion

\[x \mapsto \sqrt{\mathstrut\smash{\textcolor{#e9b509}{\underbrace{\dots}_{\Large{\geq\,0}}}}} \\ {}\]

Der Wert des Terms unter der Wurzel (Radikand ) darf nicht negativ sein!

(natürliche) Logarithmusfunktion

\(x \mapsto \ln{(\,\textcolor{#e9b509}{\underbrace{\dots}_{\Large{>\,0}}}\,)}\)  bzw.  \(x \mapsto \log_{a}{(\,\textcolor{#e9b509}{\underbrace{\dots}_{\Large{>\,0}}}\,)}\) 

Die (Natürliche) Logarithmusfunktion ist in \(\textcolor{#e9b509}{\mathbb R^{+}}\) definiert!

\[f(x) = \frac{x^2 + 2x}{\textcolor{#e9b509}{x + 1}}\]

 

Der Nenner der gebrochenrationalen Funktion \(f\) darf nicht null sein.

 

\[\textcolor{#e9b509}{x + 1 = 0} \enspace \Leftrightarrow \enspace \textcolor{#e9b509}{x = -1} \enspace \Rightarrow \enspace D_f = \mathbb R \backslash \{\textcolor{#e9b509}{-1}\}\]

 

Nullstellen von \(f\)

Nullstellen einer gebrochenrationalen Funktion \(f(x) = \dfrac{\textcolor{#0087c1}{z(x)}}{n(x)}\) sind alle Nullstellen der Zählerfunktion \(\textcolor{#0087c1}{z(x)}\), die nicht gleichzeitig Nullstellen der Nennerfunktion \(\boldsymbol{n(x)}\) sind (vgl. Anmerkung).

Nullstellen einer Funktion bestimmen

Nullstelle(n) einer Funktion bestimmen

Eine Nullstelle ist die \(x\)-Koordinate eines gemeinsamen Punktes des Graphen einer Funktion \(x \mapsto f(x)\) mit der \(x\)-Achse. An einer Nullstelle gilt: \(f(x) = 0\).

loading...
Produkt von Funktionen

Satz vom Nullprodukt: Ein Produkt ist genau dann null, wenn einer der Faktoren null ist.

\(f(x) \cdot g(x) = 0 \enspace \Rightarrow \enspace f(x) = 0\) oder \(g(x) = 0\)

Quotient von Funktionen

Ein Quotient von Funktionen ist genau dann null, wenn die Zählerfunktion null ist.

\(\dfrac{f(x)}{g(x)} = 0 \enspace \Rightarrow \enspace f(x) = 0\; (g(x) \neq 0)\)

Quadratische Funktion

Lösungsformel für quadratische Gleichungen (Mitternachtsformel, vgl. Merkhilfe)

 

\[\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x + \textcolor{#e9b509}{c} = 0 \enspace \Leftrightarrow \enspace x_{1,2} = \frac{-\textcolor{#0087c1}{b} \pm \sqrt{\textcolor{#0087c1}{b}^2 - 4\textcolor{#cc071e}{a}\textcolor{#e9b509}{c}}}{2\textcolor{#cc071e}{a}}\]

 

Diskriminante \(D = b^2 -4ac \;\):

\(D < 0\,\): keine Lösung

\(D = 0\,\): genau eine Lösung

\(D > 0\,\): zwei verschiedene Lösungen

 

Folgende Fälle lassen sich einfacher durch Umformung lösen:

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x &= 0 &&| \; x\; \text{ausklammern (Produkt formulieren)} \\[0.8em] x \cdot (ax + b) &= 0 \\[0.8em] \Rightarrow \enspace x = 0 \vee ax + b &= 0 \end{align*}\]

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#e9b509}{c} &= 0 &&| -c \enspace (c \neq 0) \\[0.8em] ax^2 &= -c &&| : a \\[0.8em] x^2 &= -\frac{c}{a} &&| \; \sqrt{\quad} \\[0.8em] x_{1,2} &= \pm \sqrt{-\frac{c}{a}} \end{align*}\]

Zwei Lösungen, falls \(-\dfrac{c}{a} > 0\), keine Lösung, falls \(-\dfrac{c}{a} < 0\)

Ganzrationale Funktion

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3:

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3

vgl. Abiturskript - 1.1.3 Ganzrationale Funktion, Nullstellen

Gebrochenrationale Funktion

Nullstellen einer gebrochenrationalen Funktion \(f(x) = \dfrac{\textcolor{#0087c1}{z(x)}}{n(x)}\) sind alle Nullstellen des Zählerpolynoms \(\textcolor{#0087c1}{z(x)}\), die nicht zugleich Nullstellen des Nennerpolynoms \(\boldsymbol{n(x)}\) sind.

Ist \(x_0\) eine Nullstelle des Zählerpolynoms \(\boldsymbol{z(x)}\) und zugleich eine vollständig kürzbare Nullstelle des Nennerpolynoms \(\boldsymbol{n(x)}\), so besitzt die gebrochenrationale Funktion \(f\) an der Stelle \(x_0\) eine hebbare Definitionslücke.

(vgl. Abiturskript - 1.2.1 Gebrochenrationale Funktion, Nullstellen und Polstellen)

Wurzelfunktion

Eine Wurzelfunktion \(f(x) = \sqrt{\textcolor{#cc071e}{g(x)}}\) nimmt genau dann den Wert null an, wenn der Radikand (Term unter der Wurzel) null ist.

Sinus- und Kosinusfunktion

\[\sin{x} = 0 \enspace \Rightarrow \enspace x = k \cdot \pi \; (k \in \mathbb Z)\]

\[\cos{x} = 0 \enspace \Rightarrow \enspace x = \dfrac{\pi}{2} + k \cdot \pi \; (k \in \mathbb Z)\]

Nullstellen der Sinusfunktion x ↦ sin x und der Kosinusfunktion x ↦ cos x

Natürliche Logarithmusfunktion

Nullstelle x = 1 der natürlichen Logarithmusfunktion

Die natürliche Logarithmusfunktion \(x \mapsto \ln{x}\) besitzt die einzige Nullstelle \(\boldsymbol{x = 1}\).

\[\ln{\left( \textcolor{#0087c1}{f(x)} \right)} = 0 \enspace \Rightarrow \enspace \textcolor{#0087c1}{f(x) = 1}\]

Natürliche Exponentialfunktion

Graph der natürlichen Exponentialfunktion x → eˣ

Die natürliche Exponentialfunktion \(x \mapsto e^x\) sowie jede verkettete Funktion \(x \mapsto e^{f(x)}\) besitzt keine Nullstelle!

\[\begin{align*}f(x) = 0 \enspace \Leftrightarrow \enspace \frac{\textcolor{#0087c1}{x^2 + 2x}}{x + 1} &= 0 \\[0.8em] \Rightarrow \enspace \textcolor{#0087c1}{x^2 + 2x} &= 0 &&| \; x\; \text{ausklammern (Produkt formulieren)} \\[0.8em] x \cdot (x + 2) &= 0 \\[0.8em] \Rightarrow \enspace x_1 = 0; \; x_2 &= -2\end{align*}\]

 

\(x_1 = 0\) und \(x_2 = -2\) sind Nullstellen von \(f\), da diese nicht gleichzeitig Nennernullstellen von \(f\) sind (vgl. Anmerkung).

 

Anmerkung

Ist \(x_0\) eine Nullstelle der Zählerfunktion \(z(x)\) und zugleich eine vollständig kürzbare Nullstelle der Nennerfunktion \(n(x)\) einer gebrochenrationalen Funktion \(f(x) = \dfrac{z(x)}{n(x)}\), so besitzt \(f\) an der Stelle \(x_0\) eine hebbare Definitionslücke (vgl. Abiturskript - 1.2.1 Nullstellen und Polstellen, gebrochenrationale Funktion)