Im Verlauf des Flugs erreicht der Federball eine maximale Höhe. Berechnen Sie diese.

(2 BE)

Lösung zu Teilaufgabe 1d

 

\[f(x) = 0{,}25 \cdot (x + 6) \cdot \sqrt{6 - x}; \; D_f = \; ]-\infty;6]\]

\(f'(x) = \dfrac{6-3x}{8\sqrt{6-x}}\) (vgl. Teilaufgabe 1c)

Extremstelle(n) bestimmen

Extremstelle(n) bestimmen

loading...

Extremstelle(n) bestimmen mit Vorzeichenwechsel der 1. Ableitung

Ist eine Funktion \(f\) in einem Intervall \(I =\, ]a;b[\) differenzierbar und \(x_0\) eine innere Stelle von \(I\), so gilt:

Wenn \(\textcolor{#cc071e}{f'(x_0) = 0}\) ist und \(\textcolor{#cc071e}{f'}\) bei \(x_0\) einen Vorzeichenwechsel

von \(\textcolor{#cc071e}{+}\) nach \(\textcolor{#cc071e}{–}\) hat, dann besitzt \(f\) an der Stelle \(x_0\) ein lokales Maximum \(f(x_0)\).

Extremstelle, lokales Maximum

von \(\textcolor{#cc071e}{–}\) nach \(\textcolor{#cc071e}{+}\) hat, dann besitzt \(f\) an der Stelle \(x_0\) ein lokales Minimum \(f(x_0)\).

Extremstelle, lokales Minimum

Extremstelle(n) bestimmen mit Vorzeichen der 2. Ableitung

Ist eine Funktion \(f\) in einem Intervall \(I =\, ]a;b[\) zweimal differenzierbar und \(x_0\) eine innere Stelle von \(I\), so gilt:

Wenn \(\textcolor{#e9b509}{f'(x_0) = 0}\) und \(f''(x_0) \textcolor{#cc071e}{\boldsymbol{<}} 0\) ist, dann besitzt \(f\) an der Stelle \(x_0\) ein lokales Maximum \(f(x_0)\).

Extremstelle, Rechtskrümmung, lokales Maximum

Wenn \(\textcolor{#e9b509}{f'(x_0) = 0}\) und \(f''(x_0) \textcolor{#0087c1}{\boldsymbol{>}} 0\) ist, dann besitzt \(f\) an der Stelle \(x_0\) ein lokales Minimum \(f(x_0)\).

Extremstelle, Linkskrümmung, lokales Minimum

Der Graph von \(f\) beschreibt die Flugbahn des Federballs für einen betrachteten Schlag.

Die notwendige Bedingung für eine Extremstelle von \(f\) lautet: \(f'(x) = 0\).

Nullstellen einer Funktion bestimmen

Nullstelle(n) einer Funktion bestimmen

Eine Nullstelle ist die \(x\)-Koordinate eines gemeinsamen Punktes des Graphen einer Funktion \(x \mapsto f(x)\) mit der \(x\)-Achse. An einer Nullstelle gilt: \(f(x) = 0\).

loading...
Produkt von Funktionen

Satz vom Nullprodukt: Ein Produkt ist genau dann null, wenn einer der Faktoren null ist.

\(f(x) \cdot g(x) = 0 \enspace \Rightarrow \enspace f(x) = 0\) oder \(g(x) = 0\)

Quotient von Funktionen

Ein Quotient von Funktionen ist genau dann null, wenn die Zählerfunktion null ist.

\(\dfrac{f(x)}{g(x)} = 0 \enspace \Rightarrow \enspace f(x) = 0\; (g(x) \neq 0)\)

Quadratische Funktion

Lösungsformel für quadratische Gleichungen (Mitternachtsformel, vgl. Merkhilfe)

 

\[\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x + \textcolor{#e9b509}{c} = 0 \enspace \Leftrightarrow \enspace x_{1,2} = \frac{-\textcolor{#0087c1}{b} \pm \sqrt{\textcolor{#0087c1}{b}^2 - 4\textcolor{#cc071e}{a}\textcolor{#e9b509}{c}}}{2\textcolor{#cc071e}{a}}\]

 

Diskriminante \(D = b^2 -4ac \;\):

\(D < 0\,\): keine Lösung

\(D = 0\,\): genau eine Lösung

\(D > 0\,\): zwei verschiedene Lösungen

 

Folgende Fälle lassen sich einfacher durch Umformung lösen:

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#0087c1}{b}x &= 0 &&| \; x\; \text{ausklammern (Produkt formulieren)} \\[0.8em] x \cdot (ax + b) &= 0 \\[0.8em] \Rightarrow \enspace x = 0 \vee ax + b &= 0 \end{align*}\]

 

\[\begin{align*}\textcolor{#cc071e}{a}x^2 + \textcolor{#e9b509}{c} &= 0 &&| -c \enspace (c \neq 0) \\[0.8em] ax^2 &= -c &&| : a \\[0.8em] x^2 &= -\frac{c}{a} &&| \; \sqrt{\quad} \\[0.8em] x_{1,2} &= \pm \sqrt{-\frac{c}{a}} \end{align*}\]

Zwei Lösungen, falls \(-\dfrac{c}{a} > 0\), keine Lösung, falls \(-\dfrac{c}{a} < 0\)

Ganzrationale Funktion

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3:

Vorgehensweise für die Bestimmung der Nullstelle(n) einer ganzrationalen Funktion ab Grad 3

vgl. Abiturskript - 1.1.3 Ganzrationale Funktion, Nullstellen

Gebrochenrationale Funktion

Nullstellen einer gebrochenrationalen Funktion \(f(x) = \dfrac{\textcolor{#0087c1}{z(x)}}{n(x)}\) sind alle Nullstellen des Zählerpolynoms \(\textcolor{#0087c1}{z(x)}\), die nicht zugleich Nullstellen des Nennerpolynoms \(\boldsymbol{n(x)}\) sind.

Ist \(x_0\) eine Nullstelle des Zählerpolynoms \(\boldsymbol{z(x)}\) und zugleich eine vollständig kürzbare Nullstelle des Nennerpolynoms \(\boldsymbol{n(x)}\), so besitzt die gebrochenrationale Funktion \(f\) an der Stelle \(x_0\) eine hebbare Definitionslücke.

(vgl. Abiturskript - 1.2.1 Gebrochenrationale Funktion, Nullstellen und Polstellen)

Wurzelfunktion

Eine Wurzelfunktion \(f(x) = \sqrt{\textcolor{#cc071e}{g(x)}}\) nimmt genau dann den Wert null an, wenn der Radikand (Term unter der Wurzel) null ist.

Sinus- und Kosinusfunktion

\[\sin{x} = 0 \enspace \Rightarrow \enspace x = k \cdot \pi \; (k \in \mathbb Z)\]

\[\cos{x} = 0 \enspace \Rightarrow \enspace x = \dfrac{\pi}{2} + k \cdot \pi \; (k \in \mathbb Z)\]

Nullstellen der Sinusfunktion x ↦ sin x und der Kosinusfunktion x ↦ cos x

Natürliche Logarithmusfunktion

Nullstelle x = 1 der natürlichen Logarithmusfunktion

Die natürliche Logarithmusfunktion \(x \mapsto \ln{x}\) besitzt die einzige Nullstelle \(\boldsymbol{x = 1}\).

\[\ln{\left( \textcolor{#0087c1}{f(x)} \right)} = 0 \enspace \Rightarrow \enspace \textcolor{#0087c1}{f(x) = 1}\]

Natürliche Exponentialfunktion

Graph der natürlichen Exponentialfunktion x → eˣ

Die natürliche Exponentialfunktion \(x \mapsto e^x\) sowie jede verkettete Funktion \(x \mapsto e^{f(x)}\) besitzt keine Nullstelle!

\[f'(x) = 0 \; \Leftrightarrow \; \frac{6-3x}{8\sqrt{6-x}} = 0 \; \Rightarrow \; 6-3x = 0 \; \Leftrightarrow \; \textcolor{#e9b509}{x = 2}\]

 

Im Sachzusammenhang kann \(f(\textcolor{#e9b509}{2})\) nur ein Maximum sein. Der Nachweis der Art des Extremwerts kann entfallen.

 

\[f(\textcolor{#e9b509}{2}) = 0{,}25 \cdot (\textcolor{#e9b509}{2} + 6) \cdot \sqrt{6 - \textcolor{#e9b509}{2}} = 0{,}25 \cdot 8 \cdot 2 = 4\]

 

Der Federball erreicht eine maximale Höhe von 4 m.