Analysis 1

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(\displaystyle d\,\colon x \mapsto \frac{1}{\sqrt{x}}\). Bestimmen Sie den Term derjenigen Stammfunktion von \(d\), deren Graph durch den Punkt \((4|-1)\) verläuft.

    (3 BE)

  • Geben Sie den Term einer gebrochen-rationalen Funktion \(c\) an, die die beiden folgenden Bedingungen erfüllt:

    - Der Graph von \(c\) berührt die \(x\)-Achse an der Stelle \(x = 1\);

    - die Funktion \(c\) hat die Polstelle \(x = 3\).

    (3 BE)

  • Bestimmen Sie die Nullstellen der Funktion \(a \, \colon x \mapsto \left( e^x - 2 \right) \cdot \left( x^3 - 2x \right)\) mit Definitionsbereich \(\mathbb R\).

    (3 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Das Aquarium wird vollständig mit Wasser gefüllt.

    Berechnen Sie die größtmögliche Wassertiefe des Aquariums.

    (2 BE)

  • Die Funktion \(F\) ist die in \(\mathbb R\) definierte Stammfunktion von \(f\) mit \(F(3) = 0\).

    Geben Sie mithilfe der Abbildung einen Näherungswert für die Ableitung von \(F\) an der Stelle \(x = 2\) an.

    (1 BE)

  • Erläutern Sie die Bedeutung des Werts des Integrals \(\displaystyle \int_{a}^{b} g(t) dt\) für \(0 \leq a < b \leq 12\) im Sachzusammenhang. Berechnen Sie das Volumen des Wassers, das sich 7,5 Stunden nach Beobachtungsbeginn im Becken befindet, wenn zu Beobachtungsbeginn 150 m³ Wasser im Becken waren. Begründen Sie, dass es sich hierbei um das maximale Wasservolumen im Beobachtungszeitraum handelt.

    (6 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)

  • Berechnen Sie auf der Grundlage des Modells die Größe des Winkels \(\alpha\), den das Plateau und die Fahrbahn an der Kante zur Abfahrt einschließen (vgl. Abbildung 2).

    (2 BE)

  • Gegeben ist die Funktion \(\displaystyle f \, \colon x \mapsto \frac{x}{\ln x}\) mit Definitionsmenge \(\mathbb R^+ \, \backslash \{1\}\). Bestimmen Sie Lage und Art des Extrempunkts des Graphen von \(f\).

    (5 BE)

  • Geben Sie den Term einer in \(\mathbb R\) definierten und umkehrbaren Funktion \(j\) an, die folgende Bedingungen erfüllt: Der Graph von \(j\) und der Graph der Umkehrfunktion von \(j\) haben keinen gemeinsamen Punkt.

    (2 BE)

  • Geben Sie für die Funktion \(h\) und deren Ableitungsfunktion \(h'\) jeweils das Verhalten für \(x \to 0\) an und zeichnen Sie \(G_{h}\) im Bereich \(0 < x < 0{,}75\) in Abbildung 1 ein.

    (3 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.

    Abbildung 2 zu Teilaufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 2

     

    (2 BE)

  • Eine Funktion \(f\) ist durch \(f(x) = 2 \cdot e^{\frac{1}{2}x} - 1\) mit \(x \in \mathbb R\) gegeben.

    Ermitteln Sie die Nullstelle der Funktion \(f\).

    (2 BE)

  • Betrachtet wird die Schar der in \(\mathbb R \backslash \{-3\}\) definierten Funktionen \(f_k \colon x \mapsto \dfrac{x^2-k}{x+3}\) mit \(k \in \mathbb R \backslash \{9\}\). Der Graph von \(f_k\) wird mit \(G_k\) bezeichnet. Die Funktion \(f\) aus Aufgabe 1 ist somit die Funktion \(f_4\) dieser Schar.

    Geben Sie die Anzahl der Nullstellen von \(f_k\) in Abhängigkeit von \(k\) an und begründen Sie, dass die Funktion \(f_0\) der Schar eine Nullstelle ohne Vorzeichenwechsel hat.

    (4 BE)

  • Berechnen Sie den Anteil (in Prozent), den das Rechteck mit dem Flächeninhalt \(A\) am Inhalt des Flächenstücks einnimmt, das \(G_h\) mit der \(x\)-Achse vollständig einschließt.

    (4 BE)

  • Der Graph der in \(\mathbb R\) definierten Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2x + 4\) ist die Parabel \(G_h\). Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion \(f^{-1}\) ist ein Teil dieser Parabel.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_h\) mit der durch die Gleichung \(y = x\) gegebenen Winkelhalbierenden \(w\) des I. und III. Quadranten.

    (Teilergebnis: x-Koordinaten der Schnittpunkte: -2 und 4)

    (3 BE)

  • Zeigen Sie, dass \(G_{f}\) genau einen Wendepunkt \(W\) besitzt, und bestimmen Sie dessen Koordinaten sowie die Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

    (zur Kontrolle: \(x\)-Koordinate von \(W\): \(e\))

    (6 BE)