Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

(2 BE)

Lösung zu Teilaufgabe 1a

 

\(X\): Anzahl der Besucher, die ein Lebkuchenherz tragen.

\(n = 25\); \(p = \frac{1}{6}\) (jeder sechste Besucher)

Die Zufallsgröße \(X\) ist nach \(B(25; \frac{1}{6})\) binomialverteilt.

Binomialverteilte Zufallsgröße - Binomialverteilung

Binomialverteilte Zufallsgröße

Für eine Zufallsgröße \(X\), welche bei einer Bernoulli-Kette der Länge \(n\) die Anzahl der Treffer \(k \in \{0,1,\dots,n\}\) mit der Trefferwahrscheinlichkeit \(p\) angibt, gilt:

Binomialverteilung (vgl. Merkhilfe)

\[P_{p}^{n}(X = k) = B(n;p;k) = \binom{n}{k} \cdot p^{k} \cdot (1 - p)^{n - k} \quad (0 \leq k \leq n)\]

Eine Binomialverteilung ist durch die Parameter \(n\) und \(p\) eindeutig bestimmt und wird durch das Symbol \(B(n:p)\) gekennzeichnet. \(X\) heißt binomialverteilt nach \(B(n;p)\).

Voraussetzung für eine Binomialverteilung

Ein Zufallsexperiment, bei dem nur zwei sich gegenseitig ausschließende Ereignisse \(A\) und \(\overline{A}\) mit konstanten Wahrscheinlichkeiten eintreten können (Bernoulli-Experiment).

Mithilfe des Stochastischen Tafelwerks (ST) ergibt sich:

 

\[P_{\frac{1}{6}}^{25}(X \leq 1) \overset{\text{ST}}{=} 0{,}06290 \approx 6{,}3\,\%\]