Geben Sie einen Term der ersten Ableitungsfunktion von \(f\) an.
(2 BE)
Lösung zu Teilaufgabe 1b
Mithilfe der Quotientenregel, der Summenregel sowie der Ableitung der natürlichen Exponentialfunktion ergibt sich:
\[f(x) = \frac{\textcolor{#0087c1}{e^x}}{\textcolor{#cc071e}{e^x-2}};\; D = \mathbb R \backslash \{\ln{2}\}\]
Ableitungen der Grundfunktionen
\[c' = 0 \enspace (c \in \mathbb R)\]
\[\left( x^r \right)' = r \cdot x^{r - 1} \enspace (r \in \mathbb R)\]
\[\left( \sqrt{x} \right)' = \frac{1}{2\sqrt{x}}\]
\[\left( \sin{x} \right)' = \cos{x}\]
\[\left( \cos{x} \right)' = -\sin{x}\]
\[\left( \ln{x} \right)' = \frac{1}{x}\]
\[\left( \log_{a}{x}\right)' = \frac{1}{x \cdot \ln{a}}\]
\[\left( e^x \right)' = e^x\]
\[\left(a^x \right)' = a^x \cdot \ln{a}\]
vgl. Merkhilfe
Faktorregel
\[\begin{align*}f(x) &= a \cdot \textcolor{#0087c1}{u(x)} \\[0.8em] f'(x) &= a \cdot \textcolor{#0087c1}{u'(x)}\end{align*}\]
Summenregel
\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(x)} + \textcolor{#cc071e}{v(x)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(x)} + \textcolor{#cc071e}{v'(x)}\end{align*}\]
Produktregel
\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v(x)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(x)} \cdot \textcolor{#cc071e}{v(x)} + \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v'(x)}\end{align*}\]
Quotientenregel
\[\begin{align*}f(x) &= \dfrac{\textcolor{#0087c1}{u(x)}}{\textcolor{#cc071e}{v(x)}} \\[0.8em] f'(x) &= \dfrac{\textcolor{#0087c1}{u'(x)} \cdot \textcolor{#cc071e}{v(x)} - \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v'(x)}}{[\textcolor{#cc071e}{v(x)}]^{2}}\end{align*}\]
Kettenregel
\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(}\textcolor{#cc071e}{v(x)}\textcolor{#0087c1}{)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(}\textcolor{#cc071e}{v(x)}\textcolor{#0087c1}{)} \cdot \textcolor{#cc071e}{v'(x)}\end{align*}\]
vgl. Merkhilfe
\[\begin{align*}f'(x) &= \frac{\textcolor{#0087c1}{e^x} \cdot (\textcolor{#cc071e}{e^x - 2}) - \textcolor{#0087c1}{e^x} \cdot \textcolor{#cc071e}{e^x}}{(\textcolor{#cc071e}{e^x - 2})^2} \\[0.8em] \bigg(&= \frac{e^x \cdot (e^x - 2 - e^x)}{(e^x - 2)^2}\bigg) \\[0.8em] \bigg(&= -\frac{2e^x}{(e^x - 2)^2} \bigg) \end{align*}\]
Anmerkung:
Eine Vereinfachung des Funktionsterms von \(f'\) ist laut Aufgabenstellung nicht notwendig.