Abiturlösungen Mathematik Bayern 2014

Aufgaben mit ausführlichen Lösungen

Die Abbildung zeigt den Graphen einer Funktion \(f\).

Abbildung zu Teilaufgabe 4a

Beschreiben Sie für \(a \leq x \leq b\) den Verlauf des Graphen einer Stammfunktion von \(f\).

(2 BE)

Lösung zu Teilaufgabe 4a

 

Nach dem Hauptsatz der Differential- und Integralrechnung gilt:

Hauptsatz der Differential- und Integralrechnung

Hauptsatz der Differential- und Integralrechnung (HDI)

Jede Integralfunktion \(\displaystyle I_{a} \colon x \mapsto \int_{a}^{x} f(t)\, dt\) einer stetigen Funktion \(f\) ist eine Stammfunktion von \(f\).

\[I_{a}(x) = \int_{a}^{x} f(t)\, dt \quad \Longrightarrow \quad I'_{a}(x) = f(x)\]

(vgl. Merkhilfe)

\[F'(x) = f(x)\]

Verlauf des Graphen einer Stammfunktion F von für a ≦ x ≦ b

\(G_f\) hat im Intervall \([a;b]\) eine einfache Nullstelle \(x_N\) mit Vorzeichenwechsel von \(+\) nach \(-\). Somit ändert der Graph einer Stammfunktion \(F\) im Intervall \([a;b]\) das Monotonieverhalten von „streng monoton steigend" zu „streng monoton fallend" und besitzt an der Stelle \(x_N\) einen Hochpunkt \(HoP\,(x_N|F(x_N))\). 

Monotoniekriterium

Anwendung der Differetialrechnung:

Monotoniekriterium

\(f'(x) < 0\) im Intervall \( I \quad \Longrightarrow \quad G_{f}\) fällt streng monoton in \(I\)

\(f'(x) > 0\) im Intervall \( I \quad \Longrightarrow \quad G_{f}\) steigt streng monoton in \(I\)

(vgl. Merkhilfe)

\[\left. \begin{align*} &F'(x) > 0 \enspace \text{für} \enspace x < x_{N} \\ &F'(x_{N}) = 0 \\ &F'(x) < 0 \enspace \text{für} \enspace x > x_{N} \end{align*} \right \} \enspace \Rightarrow \enspace \text{Hochpunkt} \; HoP\,(x_{N}|F(x_{N}))\]

 

Anmerkung: Die Abbildung zeigt im Intervall \([a;b]\) den Graphen \(G_F\) der Stammfunktion \(\displaystyle F(x) = \int_0^x f(x)\,dx\). Die Menge aller Stammfunktionen von \(f\) ist gegeben durch das unbestimmte Integral \(\displaystyle \int f(x)\,dx\). Die Stammfunktionen unterscheiden sich im Wert einer additiven Integrationskonstante \(C\), welche den Graphen einer Stammfunktion von \(f\) in \(y\)-Richtung verschiebt. Der Hochpunkt an der Stelle \(x_N\) kann somit in \(y\)-Richtung beliebig skizziert werden. Der charakteristische Verlauf des Graphen einer Stammfunktion von \(f\) bleibt derselbe (siehe Teilaufgabe 4b).