Prüfungsteil A

  • Gegeben sind die Punkte \(R\,(8|5|1)\), \(S\,(-4|-1|1)\) und \(T_u\,(u|4|3)\) mit \(u \in \mathbb R\).

    Bestimmen Sie einen Wert von \(u\) so, dass die drei Punkte ein gleichschenkliges Dreieck mit der Basis \([RS]\) bilden.

    (4 BE)

  • Geben Sie eine Gleichung einer Geraden \(j\) an, die parallel zu \(H\) durch den Punkt \(Q\) verläuft.

    (2 BE)

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Im Raum sind die Eckpunkte eines Dreiecks \(ABC\) gegeben, das weder gleichschenklig noch rechtwinklig ist. Beschreiben Sie in mehreren Teilschritten einen Weg zur Ermittlung der Koordinaten eines Punktes \(D\), durch den sich das Dreieck zum Drachenviereck \(ABCD\) ergänzen lässt.

    (4 BE)

  • Berechnen Sie den Abstand des Punktes \(P\,(2|3|-3)\) von \(E\).

    (3 BE)

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Von den im einleitenden Text angegebenen Zahlenwerten soll nur der Prozentsatz 40 % so geändert werden, dass die Ereignisse \(A\) und \(R\) unabhängig sind. Geben Sie den geänderten Wert an.

    (2 BE)

  • Begründen Sie, dass die Ereignisse \(A\) und \(R\) abhängig sind.

    (2 BE)

  • Erstellen Sie zu der beschriebenen Situation ein vollständig beschriftetes Baumdiagramm oder eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Man liest gelegentlich, eine nach rechts geneigte Handschrift weise darauf hin, dass die zugehörige Person aufgeschlossen ist. In einem Unternehmen mit 50 Angestellten gelten 35 als aufgeschlossen. 40 % der als aufgeschlossen geltenden Angestellten haben eine Handschrift, die nicht nach rechts geneigt ist. Sechs Angestellte, die nicht als aufgeschlossen gelten, haben eine nach rechts geneigte Handschrift.

    Betrachtet werden folgende Ereignisse:

    \(A\,\colon\;\)„Ein zufällig ausgewählter Angestellter gilt als aufgeschlossen."

    \(R\,\colon \;\)„Ein zufällig ausgewählter Angestellter hat eine nach rechts geneigte Handschrift."

    Beschreiben Sie das Ereignis \(\overline{A \cap R}\) im Sachzusammenhang.

    (2 BE)

  • Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

    (3 BE)

  • Die beiden entnommenen Bausteine haben tatsächlich die gleiche Farbe. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Bausteine rot sind.

    (2 BE)

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Einer der folgenden Terme nähert den Term der in \(\mathbb R \, \backslash \{0\}\) definierten Funktion \(u \,\colon x \mapsto \dfrac{1}{x} + x + 1\) für große Werte von \(x\) am besten. Geben Sie diesen Term an und machen Sie Ihre Antwort plausibel.

    \(\textsf{I} \enspace \dfrac{1}{x} \qquad \quad \)\(\textsf{II} \enspace x \qquad \quad \)\(\textsf{III} \enspace x + 1 \qquad \quad \)\(\textsf{IV} \enspace \dfrac{1}{x} + 1 \qquad \quad \)\(\textsf{V} \enspace \dfrac{1}{x} + x\)

    (3 BE)

  • Geben Sie einen möglichen Term der Funktion \(t\) an. Zeigen Sie für dieses \(t\) die Gültigkeit der Aussage aus Aufgabe 3a durch Integration mithilfe einer Stammfunktion.

    (4 BE)

  • Der Graph einer in \(\mathbb R\) definierten integrierbaren Funktion \(t\) ist punktsymmetrisch bezüglich des Koordinatenursprungs.

    Begründen Sie, dass für alle \(a \in \mathbb R\) gilt: \(\displaystyle \int_{-a}^{a} t(x)\,dx = 0\).

    (3 BE)

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(\displaystyle d\,\colon x \mapsto \frac{1}{\sqrt{x}}\). Bestimmen Sie den Term derjenigen Stammfunktion von \(d\), deren Graph durch den Punkt \((4|-1)\) verläuft.

    (3 BE)

  • Geben Sie den Term einer gebrochen-rationalen Funktion \(c\) an, die die beiden folgenden Bedingungen erfüllt:

    - Der Graph von \(c\) berührt die \(x\)-Achse an der Stelle \(x = 1\);

    - die Funktion \(c\) hat die Polstelle \(x = 3\).

    (3 BE)