Prüfungsteil A

  • Gegeben sind die Punkte \(A(0|0|0)\), \(B(3|4|1)\), \(C(1|7|3)\), \(D(-2|3|2)\).

    1. Weisen Sie nach, dass das Viereck \(ABCD\) ein Parallelogramm ist.
      (1 BE)
    2. Der Punkt \(T\) liegt auf der Strecke \(\overline{AC}\). Das Dreieck \(ABT\) hat bei \(B\) einen rechten Winkel. Ermitteln Sie das Verhältnis der Länge der Strecke \(\overline{AT}\) zur Länge der Strecke \(\overline{CT}\).
      (4 BE)
  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f\) und \(g\). Der Graph von \(f\) ist symmetrisch bezüglich der \(y\)-Achse, der Graph von \(g\) ist symmetrisch bezüglich des Koordinatenursprungs. Beide Graphen haben einen Hochpunkt im Punkt \((2|1)\).

    1. Geben Sie für die Graphen von \(f\) und \(g\) jeweils die Koordinaten und die Art eines weiteren Extrempunkts an.
      (2 BE)
    2. Untersuchen Sie die in \(\mathbb R\) definierte Funktion \(h\) mit \(h(x) = f(x) \cdot \left( g(x) \right)^3\) im Hinblick auf eine mögliche Symmetrie ihres Graphen.
      (3 BE)
  • Gegeben ist eine in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = x^4 - kx^2\), wobei \(k\) eine positive reelle Zahl ist. Die Abbildung zeigt den Graphen von \(f\).

    1. Zeigen Sie, dass \(f'(x) = 2x \cdot \left( 2x^2-k \right)\) ein Term der ersten Ableitungsfunktion von \(f\) ist.
      (1 BE)
    2. Die beiden Tiefpunkte des Graphen von \(f\) haben jeweils die \(y\)-Koordinate \(-1\). Ermitteln Sie den Wert von \(k\).
      (4 BE)

    Abbildung Aufgabe A2 Aufgabengruppe 1 (Pflichtteil) Prüfungsteil A Mathematik Beispiel-Abiturprüfung Bayern 2026

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(f \colon x \mapsto \left( \ln{x} \right)^2\). Der Graph von \(f\) verläuft durch den Punkt \(P(e|1)\).

    1. Die zweite Ableitungsfunktion von \(f\) besitzt an der Stelle \(x = e\) eine Nullstelle mit Vorzeichenwechsel. Geben Sie die Bedeutung dieser Tatsache für den Graphen von \(f\) an.
      (1 BE)
    2. Bestimmen Sie eine Gleichung der Tangente an den Graphen von \(f\) im Punkt \(P\).
      (4 BE)
  • Gegeben sind die Punkte \(R\,(8|5|1)\), \(S\,(-4|-1|1)\) und \(T_u\,(u|4|3)\) mit \(u \in \mathbb R\).

    Bestimmen Sie einen Wert von \(u\) so, dass die drei Punkte ein gleichschenkliges Dreieck mit der Basis \([RS]\) bilden.

    (4 BE)

  • Geben Sie eine Gleichung einer Geraden \(j\) an, die parallel zu \(H\) durch den Punkt \(Q\) verläuft.

    (2 BE)

  • Gegeben sind die Ebene \(H\;\colon\, 2x_1 + x_2 - x_3 = 4\) und der Punkt \(Q\,(-3|0|2)\).

    Spiegelt man den Punkt \(Q\) an der Ebene \(H\), so erhält man den Punkt \(Q'\). Ermitteln Sie die Koordinaten von \(Q'\).

    (2 BE)

  • Im Raum sind die Eckpunkte eines Dreiecks \(ABC\) gegeben, das weder gleichschenklig noch rechtwinklig ist. Beschreiben Sie in mehreren Teilschritten einen Weg zur Ermittlung der Koordinaten eines Punktes \(D\), durch den sich das Dreieck zum Drachenviereck \(ABCD\) ergänzen lässt.

    (4 BE)

  • Berechnen Sie den Abstand des Punktes \(P\,(2|3|-3)\) von \(E\).

    (3 BE)

  • Gegeben ist die Ebene \(E\;\colon\,2x_1 - x_2 + 2x_3 = 4\).

    Die Ebene \(E\) schneidet die \(x_1x_2\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\)

    (3 BE)

  • Von den im einleitenden Text angegebenen Zahlenwerten soll nur der Prozentsatz 40 % so geändert werden, dass die Ereignisse \(A\) und \(R\) unabhängig sind. Geben Sie den geänderten Wert an.

    (2 BE)

  • Begründen Sie, dass die Ereignisse \(A\) und \(R\) abhängig sind.

    (2 BE)

  • Erstellen Sie zu der beschriebenen Situation ein vollständig beschriftetes Baumdiagramm oder eine vollständig ausgefüllte Vierfeldertafel.

    (4 BE)

  • Man liest gelegentlich, eine nach rechts geneigte Handschrift weise darauf hin, dass die zugehörige Person aufgeschlossen ist. In einem Unternehmen mit 50 Angestellten gelten 35 als aufgeschlossen. 40 % der als aufgeschlossen geltenden Angestellten haben eine Handschrift, die nicht nach rechts geneigt ist. Sechs Angestellte, die nicht als aufgeschlossen gelten, haben eine nach rechts geneigte Handschrift.

    Betrachtet werden folgende Ereignisse:

    \(A\,\colon\;\)„Ein zufällig ausgewählter Angestellter gilt als aufgeschlossen."

    \(R\,\colon \;\)„Ein zufällig ausgewählter Angestellter hat eine nach rechts geneigte Handschrift."

    Beschreiben Sie das Ereignis \(\overline{A \cap R}\) im Sachzusammenhang.

    (2 BE)

  • Vor einer Schule stehen zehn Fahrräder nebeneinander; zwei davon sind Mountainbikes. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die beiden Mountainbikes unmittelbar nebeneinander stehen, wenn die Anordnung der Fahrräder zufällig erfolgte.

    (3 BE)

  • Die beiden entnommenen Bausteine haben tatsächlich die gleiche Farbe. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Bausteine rot sind.

    (2 BE)

  • Der Anteil der Linkshänder in der Bevölkerung Deutschlands beträgt ein Sechstel. Aus der Bevölkerung werden acht Personen zufällig ausgewählt. Zwei der folgenden Terme I bis VI beschreiben die Wahrscheinlichkeit dafür, dass genau fünf dieser Personen Linkshänder sind. Geben Sie diese beiden Terme an.

    \[\textsf{I} \enspace \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)\]

    \[\textsf{II} \enspace \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{III} \enspace 1 - \binom{8}{3} \cdot \left( \frac{5}{6} \right)^3 \cdot \left( \frac{1}{6} \right)^5\]

    \[\textsf{IV} \enspace \binom{8}{5} \cdot \left( \frac{5}{6} \right)^5 \cdot \left( \frac{1}{6} \right)^3\]

    \[\textsf{V} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^5 \cdot \left( \frac{5}{6} \right)^3\]

    \[\textsf{VI} \enspace \binom{8}{5} \cdot \left( \frac{1}{6} \right)^3 \cdot \left( \frac{5}{6} \right)^5\]

    (2 BE)

  • Einer der folgenden Terme nähert den Term der in \(\mathbb R \, \backslash \{0\}\) definierten Funktion \(u \,\colon x \mapsto \dfrac{1}{x} + x + 1\) für große Werte von \(x\) am besten. Geben Sie diesen Term an und machen Sie Ihre Antwort plausibel.

    \(\textsf{I} \enspace \dfrac{1}{x} \qquad \quad \)\(\textsf{II} \enspace x \qquad \quad \)\(\textsf{III} \enspace x + 1 \qquad \quad \)\(\textsf{IV} \enspace \dfrac{1}{x} + 1 \qquad \quad \)\(\textsf{V} \enspace \dfrac{1}{x} + x\)

    (3 BE)

  • Geben Sie einen möglichen Term der Funktion \(t\) an. Zeigen Sie für dieses \(t\) die Gültigkeit der Aussage aus Aufgabe 3a durch Integration mithilfe einer Stammfunktion.

    (4 BE)

  • Der Graph einer in \(\mathbb R\) definierten integrierbaren Funktion \(t\) ist punktsymmetrisch bezüglich des Koordinatenursprungs.

    Begründen Sie, dass für alle \(a \in \mathbb R\) gilt: \(\displaystyle \int_{-a}^{a} t(x)\,dx = 0\).

    (3 BE)