Exponentialfunktion

  • Weisen Sie rechnerisch nach, dass \(G_f\) in \(\mathbb R\) streng monoton steigt.

    (zur Kontrolle: \(f'(x)= \displaystyle \frac{18e^x}{(e^x + 9)^2}\))

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Bestimmen Sie den Inhalt des Flächenstücks, das \(G_h\), die Koordinatenachsen und die Gerade mit der Gleichung \(x = 5\) einschließen. Interpretieren Sie das Ergebnis im Sachzusammenhang.

    (6 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto 2x \cdot e^{-0{,}5x^2}\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

    Abbildung 2Abb. 2

    Weisen Sie nach, dass \(G_f\) punktsymmetrisch bezüglich des Koordinatenursprungs ist, und machen Sie anhand des Funktionsterms von \(f\) plausibel, dass \(\lim \limits_{x \, \to \, + \infty} f(x) = 0\) gilt.

    (2 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\).

    (zur Kontrolle: \(f'(x) = 2e^{-0{,}5x^2} \cdot (1 - x^2)\,\); y-Koordinate des Hochpunkts: \(\frac{2}{\sqrt{e}}\))

    (6 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Die Anzahl der KInder, die eine Frau im Laufe ihres Lebens durchschnittlich zur Welt bringt, wird durch eine sogenannte Geburtenziffer angegeben, die jedes Jahr statistisch ermittelt wird.

    Die Funktion \(g_{1{,}4} \colon x \mapsto 2x \cdot e^{-0{,}5x^2} + 1{,}4\) beschreibt für \(x \geq 0\) modelhaft die zeitliche Entwicklung der Geburtenziffer in einem europäischen Land. Dabei ist \(x\) die seit dem Jahr 1955 vergangene Zeit in Jahrzehnten (d.h. \(x = 1\) entspricht dem Jahr 1965) und \(g_{1{,}4} (x)\) die Geburtenziffer. Damit die Bevölkerungszahl in diesem Land langfristig näherungsweise konstant bleibt, ist dort eine Geburtenziffer von etwa 2,1 erforderlich.

    Zeichnen Sie den Graphen von \(g_{1{,}4}\) in Abbildung 2 ein und ermitteln Sie graphisch mit angemessener Genauigkeit, in welchem Zeitraum die Geburtenziffer mindestens 2,1 beträgt.

    (4 BE)

  • Welche künftige Entwicklung der Bevölkerungszahl ist auf der Grundlage des Modells zu erwarten? Begründen Sie Ihre Antwort.

    (2 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010.Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form \(N(x) = N_0 \cdot e^{k \cdot (x - 2000)}\) beschreiben, wobei \(N(x)\) die Anzahl der Menschen zu Beginn des Jahres \(x\) ist.

    Bestimmen Sie \(N_0\) und \(k\).

    (5 BE)

  • Bestimmen Sie die Gleichung der Tangente an \(G_f\) im Punkt \((0|6)\). Skizzieren Sie \(G_f\) unter Verwendung der bisherigen Ergebnisse in ein geeignet anzulegendes Koordinatensystem.

    (6 BE)

  • Geben Sie das Verhalten von \(f\) für \(x \to -\infty\) an. Machen Sie plausibel, dass \(G_f\) für \(x \to +\infty\) die Gerade mit der Gleichung \(y = x\) als schräge Asymptote besitzt.

    (3 BE)

  • Für \(x \geq 0\) beschreibt die Funktion \(h\) modelhaft die zeitliche Entwicklung des momentanen Schadstoffausstoßes einer Maschine. Dabei ist \(x\) die seit dem Start der Maschine vergangene Zeit in Minuten und \(h(x)\) die momentane Schadstoffausstoßrate in Milligramm pro Minute.

     

    Geben Sie in diesem Sachzusammenhang die Bedeutung des Monotonieverhaltens von \(G_h\) sowie des Grenzwerts von \(h\) für \(x \to +\infty\) an.

    (3 BE)

Seite 2 von 2