Betrag eines Vektors

  • Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.

    In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte \(W_{1}\), \(W_{2}\), \(W_{3}\) und \(W_{4}\) beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.

    Abbildung zu Geometrie 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Der Punkt \(A(45|60|0)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt \(K_{0}\), die abgesenkte Position durch den Punkt \(K_{1}\) dargestellt.

    Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.

    (4 BE)

  • Im Zielpunkt ist die Kamera zunächst senkrecht nach unten orientiert. Um die Position des Balls anzuvisieren, die im Modell durch den Punkt \(B(40|105|0)\) beschrieben wird, muss die Kamera gedreht werden.

    Berechnen Sie die Größe des erforderlichen Drehwinkels. 

    (4 BE)

  • Weisen Sie nach, dass das Viereck \(ABCD\) ein Rechteck ist. Bestimmen Sie die Koordinaten von \(M\).

    (4 BE)

  • Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck \(ABCD\) dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungspunkt am Solarmodul durch den Punkt \(M\) beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der \(x_{1}x_{2}\)-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8 m in der Realität.

    Abbildung Teilaufgabe d Geometrie 1 Mathematik Abitur Bayern 2017 B

     

    Um einen möglichst großen Energieertrag zu erzielen, sollte die Größe des Neigungswinkels \(\varphi\) des Solarmoduls gegenüber der Horizontalen zwischen 30° und 36° liegen. Prüfen Sie, ob diese Bedingung erfüllt ist.

    (3 BE)

  • Um die Sonneneinstrahlung im Laufe des Tages möglichst effektiv zur Energiegewinnung nutzen zu können, lässt sich das Metallrohr mit dem Solarmodul um die Längsachse des Rohrs drehen. Die Größe des Neigungswinkels \(\varphi\) gegenüber der Horizontalen bleibt dabei unverändert. Betrachtet wird der Eckpunkt des Solarmoduls, der im Modell durch den Punkt \(A\) dargestellt wird. Berechnen Sie den Radius des Kreises, auf dem sich dieser Eckpunkt des Solarmoduls bei der Drehung des Metallrohrs bewegt, auf Zentimeter genau.

    (4 BE)

  • Im Zelt ist eine Lichtquelle so aufgehängt, dass sie von jeder der vier Wände einen Abstand von 50 cm hat. Ermitteln Sie die Koordinaten des Punkts, der im Modell die Lichtquelle darstellt.

    (4 BE)

  • Ein Teil der Zeltwand, die im Modell durch das Dreieck \(CDS\) dargestellt wird, kann mithilfe zweier vertikal stehender Stangen der Länge 1,80 m zu einem horizontalen Vordach aufgespannt werden (vgl. Abbildung 2). Die dadurch entstehende 1,40 m breite Öffnung in der Zeltwand wird im Modell durch ein Rechteck dargestellt, das symmetrisch zu \(g\) liegt Dabei liegt eine Seite dieses Rechtecks auf der Strecke \([CD]\). Berechnen Sie den Flächeninhalt des Vordachs.

    Abbildung 2 Teilaufgabe f Geometrie 2 Mathematik Abitur Bayern 2017 B

     

    (5 BE)

  • Gegeben ist die Kugel mit dem Mittelpunkt \(M(1|4|0)\) und Radius 6.

    Bestimmen Sie alle Werte \(p \in \mathbb R\), für die der Punkt \(P(5|1|p)\) auf der Kugel liegt.

    (3 BE)

  • Die Abbildung zeigt modellhaft wesentliche Elemente einer Kletteranlage: zwei horizontale Plattformen, die jeweils um einen vertikal stehenden Pfahl gebaut sind, sowie eine Kletterwand, die an einer der beiden Plattformen angebracht ist.

    Abbildung Geometrie 2 Mathematik Abitur Bayern 2018 B

    Im verwendeten Koordinatensystem beschreibt die \(x_{1}x_{2}\)-Ebene den horizontalen Untergrund. Die Plattformen und die Kletterwand werden als ebene Vielecke betrachtet. Eine Längeneinheit entspricht 1 m in der Wirklichkeit. Die Punkte, in denen die Pfähle aus dem Untergrund austreten, werden durch \(P_{1}(0|0|0)\) und \(P_{2}(5|10|0)\) dargestellt. Außerdem sind die Eckpunkte \(A(3|0|2)\), \(B(0|3|2)\), \(E(6|0|0)\), \(F(0|6|0)\), \(R(5|7|3)\) und \(T(2|10|3)\) gegeben. Die Materialstärke aller Bauteile der Anlage soll vernachlässigt werden.

    In den Mittelpunkten der oberen und unteren Kante der Kletterwand sind die Enden eines Seils befestigt, das 20 % länger ist als der Abstand der genannten Mittelpunkte. Berechnen Sie die Länge des Seils.

    (3 BE)

  • Über ein Kletternetz kann man von einer Plattform zur anderen gelangen. Die vier Eckpunkte des Netzes sind an den beiden Pfählen befestigt. Einer der beiden unteren Eckpunkte befindet sich an Pfahl 1 auf der Höhe der zugehörigen Plattform, der andere untere Eckpunkt an Pfahl 2 oberhalb der Plattform 2. An jedem Pfahl beträgt der Abstand der beiden dort befestigten Eckpunkte des Netzes 1,80 m. das Netz ist so gespannt, dass davon ausgegangen werden kann, dass es die Form eines ebenen Vierecks hat.

    Berechnen Sie den Flächeninhalt des Netzes und erläutern Sie Ihren Ansatz.

    (3 BE)

  • Gegeben sind die beiden Kugeln \(k_{1}\) mit Mittelpunkt \(M_{1}(1|2|3)\) und Radius \(5\) sowie \(k_{2}\) mit Mittelpunkt \(M_{2}(-3|-2|1)\) und Radius \(5\).

    Zeigen Sie, dass sich \(k_{1}\) und \(k_{2}\) schneiden.

    (2 BE)

  • Eine Geothermieanlage fördert durch einen Bohrkanal heißes Wasser aus einer wasserführenden Gesteinsschicht an die Erdoberfläche. In einem Modell entspricht die \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems der horizontal verlaufenden Erdoberfläche. Eine Längeneinheit im Koordinatensystem entspricht einem Kilometer in der Realität. Der Bohrkanal besteht aus zwei Abschnitten, die im Modell vereinfacht durch die Strecken \([AP]\) und \([PQ]\) mit den Punkten \(A(0|0|0)\), \(P(0|0|-1)\) und \(Q(1|1|-3{,}5)\) beschrieben werden (vgl. Abbildung).

    Abbildung Geometrie 1 Mathematik Abitur Bayern 2019 B

     

    Berechnen Sie auf der Grundlage des Modells die Gesamtlänge des Bohrkanals auf Meter gerundet.

    (2 BE)

  • Der Bohrkanal wird geradlinig verlängert und verlässt die wasserführende Gesteinsschicht in einer Tiefe von 3600 m unter der Erdoberfläche. Die Austrittsstelle wird im Modell als Punkt \(R\) auf der Geraden \(PQ\) beschrieben. Bestimmen Sie die Koordinaten von \(R\) und ermitteln Sie die Dicke der wasserführenden Gesteinsschicht auf Meter gerundet.

    (zur Kontrolle: \(x_{1}\)- und \(x_{2}\)-Koordinate von \(R\): \(1{,}04\))

    (6 BE)

  • Aus energetischen Gründen soll der Abstand der beiden Stellen, an denen die beiden Bohrkanäle auf die wasserführende Gesteinsschicht treffen, mindestens 1500 m betragen. Entscheiden Sie auf der Grundlage des Modells, ob diese Bedingung für jeden möglichen zweiten Bohrkanal erfüllt wird.

    (4 BE)

  • Die Abbildung zeigt den Würfel \(ABCDEFG\) mit \(A(0|0|0)\) und \(G(5|5|5)\) in einem kartesischen Koordinatensystem. Die Ebene \(T\) schneidet die Kanten des Würfels unter anderem in den Punkten \(I(5|0|1)\), \(J(2|5|0)\), \(K(0|5|2)\) und \(L(1|0|5)\).

    Abbildung Geometrie 2 Mathematik Abitur Bayern 2019 B

    Zeichnen Sie das Viereck \(IJKL\) in die Abbildung ein und zeigen Sie, dass es sich um ein Trapez handelt, bei dem zwei gegenüberliegende Seiten gleich lang sind.

    (4 BE)

  • Die Strecke \([PQ]\) mit den Eigenschaften \(P(8|-5|1)\) und \(Q\) ist Durchmesser einer Kugel mit Mittelpunkt \(M(5|-1|1)\).

    Berechnen Sie die Koordinaten von \(Q\) und weisen Sie nach, dass der Punkt \(R(9|-1|4)\) auf der Kugel liegt.

    (3 BE)

  • Gegeben sind die Punkte \(P(-2|3|0)\), \(R(2|-1|2)\) und \(Q(q|1|5)\) mit der reellen Zahl \(q\), wobei \(Q\) von \(P\) genauso weit entfernt ist wie von \(R\).

    Bestimmen Sie \(q\).

    (zur Kontrolle: \(q = -2\))

    (3 BE)

  • Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

    (3 BE)

  • Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

    (5 BE)

  • Die Kugel \(K\) mit dem Mittelpunkt \(M(-13|20|0)\) berührt die Ebene \(E\). Bestimmen Sie die Koordinaten des zugehörigen Berührpunkts \(F\) sowie den Kugelradius \(r\).

    (zur Kontrolle: \(F(-5|4|2)\), \(r = 18\))

    (6 BE)