Verschiebung von Funktionsgraphen

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion an, deren Graph im Punkt \((2|1)\) eine waagrechte Tangente, aber keinen Extrempunkt hat.

    (3 BE)

  • Die beschriebene Spiegelung von \(G_{f}\) an der Geraden \(x = 4\) kann durch eine Spiegelung von \(G_{f}\) an der \(y\)-Achse mit anschließender Verschiebung ersetzt werden. Beschreiben Sie diese Verschiebung und geben Sie \(a, b \in \mathbb R\) an, sodass \(g(x) = f(ax + b)\) für \(x \in \; ]-\infty;8[\) gilt.

    (3 BE)

  • \(G_{f}\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto \frac{1}{18} \cdot (x^{3} - 25x)\) durch Verschiebung in positive \(x\)-Richtung hervor. Ermitteln Sie, um wie viel der Graph von \(g\) dazu verschoben werden muss. Begründen Sie mithilfe der Funktion \(g\), dass der Graph von \(f\) symmetrisch bezüglich seines Wendepunkts ist.

    (4 BE)

  • Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

    (5 BE)

  • Wird die zweite Tablette zweieinhalb Stunden nach der ersten Tablette eingenommen, so kann die Wirkstoffkonzentration für \(x \in [2{,}5;9]\) mit einem der folgenden Terme beschrieben werden. Wählen Sie den passenden Term aus und begründen Sie Ihre Wahl.

    (A) \(\quad f(x) + f(x + 2{,}5)\)

    (B) \(\quad f(x) + f(x - 2{,}5)\)

    (C) \(\quad f(x - 2{,}5) + f(2{,}5)\)

    (D) \(\quad f(x) - f(x - 2{,}5)\)

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

    Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = \sqrt{x - 2} + 1\) und maximalem Definitionsbereich.

    Zeichnen Sie den Graphen von \(f\) im Bereich \(2 \leq x \leq 11\) in ein Koordinatensystem.

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]-\infty;1]\]

    (2 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

    \[W =\; ]3;+\infty[\]

    (2 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(p \colon x \mapsto \dfrac{40}{(x - 12)^{2} + 4}\); die Abbildung zeigt den Graphen \(G_{p}\) von \(p\).

    Abbildung Aufgabe 3 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Beschreiben Sie, wie \(G_{p}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(h \colon x \mapsto \dfrac{5}{x^{2} + 4}\) schrittweise hervorgeht, und begründen Sie damit, dass \(G_{p}\) bezüglich der Geraden mit der Gleichung \(x = 12\) symmetrisch ist.

    (4 BE)

  • Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

    (2 BE)

  • Abbildung 2 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g\), dessen einzige Extrempunkte \((-1|1)\) und \((0|0)\) sind, sowie den Punkt \(P\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 2

    Geben Sie die Koordinaten des Tiefpunkts des Graphen der in \(\mathbb R\) definierten Funktion \(h(x) = -g(x - 3)\) an.

    (2 BE) 

  • Abbildung 2 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g\), dessen einzige Extrempunkte \((-1|1)\) und \((0|0)\) sind, sowie den Punkt \(P\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 2

    Geben Sie die Koordinaten des Tiefpunkts des Graphen der in \(\mathbb R\) definierten Funktion \(h(x) = -g(x - 3)\) an.

    (2 BE) 

  • Geben Sie alle Werte von \(k\) an, für die der Graph von \(f_k\) und der Graph der Umkehrfunktion von \(f_k\) keinen gemeinsamen Punkt haben.

    (2 BE) 

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h : x \mapsto 6 \cdot e^{-0{,}5x} + 1{,}5\). Die Abbildung zeigt den in \(\mathbb R\) streng monoton fallenden Graphen \(G_h\) von \(h\) sowie dessen Asymptote, die durch die Gleichung \(y = 1{,}5\) gegeben ist.

    Beschreiben Sie, wie \(G_h\) aus dem Graphen der in \(\mathbb R\) definierten natürlichen Exponentialfunktion \(x \mapsto e^x\) hervorgeht.

    Abbildung Teilaufgabe 2a: Exponetialfunktion h, streng monoton fallend, Asymptote =1,5

    (4 BE)

  • Haben zu Beobachtungsbeginn Sonnenblumen der Sorte Tramonto die gleiche Höhe wie Sonnenblumen der Sorte Alba, so erreichen von da an die Sonnenblumen der Sorte Tramonto im Vergleich zu denen der Sorte Alba jede Höhe in der Hälfte der Zeit.

    Das Wachstum von Sonnenblumen der Sorte Tramonto lässt sich modellhaft mithilfe einer in \(\mathbb R\) definierten Funktion \(g\) beschreiben, die eine Funktionsgleichung der Form I, II, oder III mit \(k \in \mathbb R^+\) besitzt:

    \[\textsf{I}\enspace y = \frac{2e^{x+k}}{e^{x+k}+9}\]

    \[\textsf{II}\enspace y = k \cdot \frac{2e^x}{e^x + 9}\]

    \[\textsf{III}\enspace y = \frac{2e^{kx}}{e^{kx} + 9}\]

    Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten und \(y\) ein Näherungswert für die Höhe einer Blume in Metern.

    Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II als Funktionsgleichung von \(g\) infrage kommt.

    (4 BE)

  • Betrachtet wird die in \(\mathbb R^+\) definierte Funktion \(h \colon x \mapsto -\ln x + 3\,\).

    Geben Sie an, wie der Graph von \(h\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln x\) hervorgeht

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{x + 3}\) mit Definitionsmenge \(D_f\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\), einen beliebigen Punkt \(Q(x|f(x))\) auf \(G_f\) sowie den Punkt \(P(1{,}5|0)\) auf der \(x\)-Achse.

    Abbildung 1 Teilaufgabe 1aAbb. 1

    Begründen Sie, dass \(D_f = [-3;+\infty[\) die maximale Definitionsmenge von \(f\) ist. Wie geht \(G_f\) aus dem Graphen der in \(\mathbb R_0^+\) definierten Funktion \(w : x \mapsto \sqrt{x\;}\;\) hervor?

    (2 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [2; + \infty[\)

    (2 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

Seite 2 von 3