Verhalten an den Rändern des Definitionsbereichs

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln(2x + 3)\) mit maximaler Definitionsmenge \(D\) und Wertemenge \(W\). Der Graph von \(g\) wird mit \(G_{g}\) bezeichnet.

    Geben Sie \(D\) und \(W\) an.

    (2 BE)

  • Begründen Sie, dass die \(x\)-Achse horizontale Asymptote von \(G_{f}\) ist, und geben Sie die Gleichungen der vertikalen Asymptoten von \(G_{f}\) an. Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse.

    (3 BE)

  • Gegeben ist die Schar der in \(\mathbb R\) definierten Funktionen \(f_{n} \colon x \mapsto x^4 - 2x^n\) mit \(n \in \mathbb N\) sowie die in \(\mathbb R\) definierte Funktion \(f_{0} \colon x \mapsto x^4 - 2\).

    Die Abbildungen 1 bis 4 zeigen die Graphen der Funktionen \(f_{0}\), \(f_{1}\), \(f_{2}\) bzw. \(f_{4}\). Ordnen Sie jeder dieser Funktionen den passenden Graphen zu und begründen Sie drei Ihrer Zuordnungen durch Aussagen zur Symmetrie, zu den Schnittpunkten mit den Koordinatenachsen oder dem Verhalten an den Grenzen des Definitionsbereichs des jeweiligen Graphen.

    Abbildung 1 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Abbildung 2 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Abbildung 3 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 3

    Abbildung 4 zu Teilaufgabe 2a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 4

     

    (4 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{\ln{x}}{x^{2}}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) sowie die Nullstelle von \(f\) an und bestimmen Sie \(\lim \limits_{x \, \to \, 0} f(x)\).

    (3 BE)

  • Betrachtet wird nun die Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x} f(t)\,dt\) mit Definitionsbereich \(D_{F} = [-5;5]\).

    Zeigen Sie mithilfe einer geometrischen Überlegung, dass \(F(5) = \frac{25}{4}\pi\) gilt.

    Einer der Graphen A, B und C ist der Graph von \(F\). Entscheiden Sie, welcher dies ist, und begründen Sie Ihre Entscheidung, indem Sie erklären, warum die beiden anderen Graphen nicht infrage kommen.

    Abbildung links zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung Mitte zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Abbildung rechts zu Teilaufgabe 3b - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    (5 BE)

  • Begründen Sie, dass \(\lim \limits_{x\,\to\,0}f'(x) = -\infty\) und \(\lim \limits_{x\,\to\,+\infty}f'(x) = 0\) gilt. Geben Sie \(f'(0{,}5)\) und \(f'(10)\) auf eine Dezimale genau an und zeichnen Sie den Graphen der Ableitungsfunktion \(f'\) unter Berücksichtigung aller bisherigen Ergebnisse in Abbildung 1 ein.

    (6 BE)

  • Geben ist die Funktion \(f \colon x \mapsto 2 - \ln{(x - 1)}\) mit maximalem Definitionsbereich \(D_{f}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(D_{f} = \; ]1;+\infty[\) ist, und geben Sie das Verhalten von \(f\) an den Grenzen des Definitionsbereichs an.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Geben Sie den maximalen Definitionsbereich des Terms \(f'(x) = \dfrac{10 - 2x}{\sqrt{10x - x^2}}\) an. Bestimmen Sie \(\lim \limits_{x\,\to\,0}f'(x)\) und deuten Sie das Ergebnis geometrisch.

    (4 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(g \colon x \mapsto \dfrac{1}{x^2} - 1\).

    Geben Sie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) sowie die Wertemenge von \(g\) an.

    (2 BE) 

  • Betrachtet wird nun die Funktion \(h\) mit \(h(x) = \ln(g(x))\). Geben Sie mithilfe des Verlaufs von \(G_g\) die maximale Definitionsmenge \(D_h\) von \(h\), das Verhalten von \(h\) an den Grenzen von \(D_h\) sowie einen Näherungswert für die Nullstelle von \(h\) an.

    (5 BE)

Seite 2 von 2