Extrempunkt

  • Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

    (3 BE)

  • Der Graph \(G_f\) besitzt in genau einem Punkt eine waagrechte Tangente. Bestimmen Sie die Koordinaten dieses Punkts und begründen Sie, dass es sich um einen Hochpunkt handelt.

    (zur Kontrolle: \(f'(x) = \dfrac{10 - 2x}{\sqrt{10x - x^2}}\); \(y\)-Koordinate des Hochpunkts: \(10\))

    (5 BE)

  • Eine in \(\mathbb R\) definierte ganzrationale, nicht lineare Funktion \(f\) mit erster Ableitungsfunktion \(f'\) und zweiter Ableitungsfunktion \(f''\) hat folgende Eigenschaften:

    • \(f\) hat bei \(x_1\) eine Nullstelle.
    • Es gilt \(f'(x_2) = 0\) und \(f''(x_2) \neq 0\).
    • \(f'\) hat ein lokales Minimum an der Stelle \(x_3\).

    Abbildung 1 zeigt die Positionen von \(x_1\), \(x_2\) und \(x_3\).

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 1

    Begründen Sie, dass der Grad von \(f\) mindestens 3 ist.

    (2 BE)

  • Skizzieren Sie in Abbildung 1 einen möglichen Graphen von \(f\).

    (3 BE) 

  • Ein den oberen Rand des Kunstwerks genauer darstellendes Modell liefert der Graph der in \(\mathbb R\) definierten ganzrationalen Funktion \(q\) vierten Grades mit \(q(x) = -0{,}11x^4 - 0{,}81x^2 + 5\,\). Der Graph von \(q\) wird mit \(G_q\) bezeichnet.

    Weisen Sie rechnerisch nach, dass \(G_q\) symmetrisch bezüglich der \(y\)-Achse ist, durch die Punkte \(A\) und \(B\) verläuft und genau einen Extrempunkt besitzt.

    (7 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(\displaystyle g \colon x \mapsto x \cdot e^{-2x}\,\).

    Bestimmen Sie die Koordinaten des Punktes, in dem der Graph von \(g\) eine waagrechte Tangente hat.

    (5 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Eigenschaft besitzt.

    Der Graph der Funktion \(f\) hat den Hochpunkt \((0|5)\,\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\).

    (zur Kontrolle: \(f'(x) = 2e^{-0{,}5x^2} \cdot (1 - x^2)\,\); y-Koordinate des Hochpunkts: \(\frac{2}{\sqrt{e}}\))

    (6 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\,\).

    (8 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [-2;2]\)

    (2 BE)

Seite 4 von 4