Skizzieren / Zeichnen von Funktionsgraphen

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Skizzieren Sie den Graphen der Funktion \(A\) unter Verwendung der bisherigen Ergebnisse in der Abbildung 2.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (3 BE)

  • Um die zeitliche Entwicklung des Flächeninhalts eines Algenteppichs am Nordufer des Sees zu beschreiben, wird im Term \(A(x)\) die im Exponenten zur Basis e enthaltene Zahl -0,2 durch eine kleinere Zahl ersetzt.

    Vergleichen Sie den Algenteppich am Nordufer mit dem am Südufer

    ● hinsichtlich der durch \(A(0)\) und \(\lim \limits_{x\,\to\,+\infty} A(x)\) beschriebenen Eigenschaften (vgl. Aufgabe 2a).

    ● hinsichtlich der momentanen Änderungsrate des Flächeninhalts zu Beobachtungsbeginn (vgl. Aufgabe 2c).

    Skizzieren Sie - ausgehend von diesem Vergleich - in der Abbildung 2 den Graphen einer Funktion, die eine mögliche zeitliche Entwicklung des Flächeninhalts des Algenteppichs am Nordufer beschreibt.

    (5 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = \sqrt{x - 2} + 1\) und maximalem Definitionsbereich.

    Zeichnen Sie den Graphen von \(f\) im Bereich \(2 \leq x \leq 11\) in ein Koordinatensystem.

    (3 BE)

  • Die Punkte \(A(3|3{,}6)\) und \(B(8|0{,}8)\) liegen auf \(G_{f}\); zwischen diesen beiden Punkten verläuft \(G_{f}\) unterhalb der Strecke \([AB]\).

    Skizzieren Sie \(G_{f}\) im Bereich \(-10 \leq x \leq 10\) unter Verwendung der bisherigen Informationen in einem Koordinatensystem.

    (4 BE)

  • Geben Sie \(g'(0)\) an un zeichnen Sie \(G_{g}\) im Bereich \(-4 \leq x \leq 4\) unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass \(G_{g}\) in \(W(0|g(0))\) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

    (3 BE)

  • Geben Sie \(f(8)\) an und zeichnen Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein.

    (4 BE)

  • Skizzieren Sie in Abbildung 1 einen möglichen Graphen von \(f\).

    (3 BE) 

  • Abbildung 1 zeigt den Graphen \(G_f\) einer in \(]-\infty;5[\) definierten Funktion \(f\,\).

    Skizzieren Sie in der Abbildung den Graphen der zugehörigen Ableitungsfunktion \(f'\,\). Berücksichtigen Sie dabei insbesondere einen Näherungswert für \(f'(0)\), die Nullstelle von \(f'\) und das Verhalten von \(f'\) für \(x \mapsto 5\,\).

    Abbildung 1: Graph von fAbb. 1

    (4 BE)

  • Abbildung 2 zeigt den Graphen \(G_g\) einer in \(\mathbb R \backslash \{1\}\) definierten gebrochen-rationalen Funktion \(g\) mit folgenden Eigenschaften:

    • Die Funktion \(g\) hat in \(x = 1\) eine Polstelle ohne Vorzeichenwechsel;

    • \(G_g\) verläuft stets oberhalb seiner schrägen Asymptote, die durch die Gleichung \(y = \frac{1}{2}x - 1\) gegeben ist;

    • die einzige Nullstelle von \(g\) ist \(x = -1\).

    Abbildung 2, Teilaufgabe 2a, Graph der gebrochen-rationalen Funktion g Abb. 2

    Ermitteln Sie mithilfe von Abbildung 2 näherungsweise den Wert der Ableitung \(g'\) von \(g\) an der Stelle \(x = -1\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in der Abbildung.

    Aus der Gleichung der schrägen Asymptote ergibt sich unmittelbar das Verhalten der Ableitung \(g'\) für \(x \to +\infty\) und \(x \to -\infty\). Geben Sie dieses Verhalten an und skizzieren Sie den Graphen von \(g'\) in Abbildung 2.

    (6 BE)

Seite 2 von 2