Stammfunktion

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

    (2 BE)

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

    (2 BE)

  • Zeigen Sie, dass \(F \colon x \mapsto 3x - (x - 1) \cdot \ln{(x - 1)}\) mit Definitionsbereich \(D_{f} = \; ]1; +\infty[\) eine Stammfunktion von \(f\) ist, und bestimmen Sie den Term der Stammfunktion von \(f\), die bei \(x = 2\) eine Nullstelle hat.

    (4 BE)

  • Gegeben ist ferner die in \(]-1;+\infty[\) definierte Funktion \(F \colon x \mapsto 4 \cdot \ln{(x + 1)} + \dfrac{4}{x + 1}\).

    Zeigen Sie, dass \(F\) für \(x > -1\) eine Stammfunktion von \(f\) ist.

    (3 BE)

  • Geben Sie den Term einer Stammfunktion der in \(\mathbb R\) definierten Funktion \(k \colon x \mapsto x - g(x)\) an.

    (2 BE)

  • Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von \(G_{h}\) einen Näherungswert für \(\displaystyle \int_{10}^{20} h(x)dx\).

    (2 BE)

  • Nun wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) betrachtet; ihr Graph wird mit \(G_{F}\) bezeichnet.

    Begründen Sie, dass \(F\) in \(x = 0\) eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von \(\mathbf{G_{f}}\) plausibel, dass im Intervall \([1;3]\) eine weitere Nullstelle von \(F\) liegt.
    Geben Sie an, welche besondere Eigenschaft \(G_{F}\) im Punkt \((-1|F(-1))\) hat, und begründen Sie Ihre Angabe.

    (5 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) sowie den Graphen \(G_{g}\) der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto -cos(\frac{\pi}{2}x)\).
    Beschreiben Sie, wie \(G_{g}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(x \mapsto \cos{x}\) hervorgeht, und berechnen Sie durch Integration von \(g\) einen weiteren Näherungswert für \(F(1)\).

    Abbildung 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(F(1) \approx -\frac{2}{\pi}\))

    (5 BE)

  • Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1

    (4 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_{f}\), der \(y\)-Achse sowie den Geraden mit den Gleichungen \(y = 1\) und \(x = 5\) begrenzt wird. Einen Teil dieses Flächenstücks nimmt das zu \(s = 5\) gehörige Rechteck ein. Bestimmen Sie den prozentualen Anteil des Flächeninhalts dieses Rechtecks am Inhalt des Flächenstücks.

    (7 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{2}^{3} f(x)dx\).

    (3 BE)

  • Die in \(\mathbb R\) definierte Funktion \(F\) ist diejenige Stammfunktion von \(f\), deren Graph durch den Punkt \(T(-1|2)\) verläuft.

    Begründen Sie mithilfe der Abbildung, dass der Graph von \(F\) im Punkt \(T\) einen Tiefpunkt besitzt.

    (2 BE)

  • Skizzieren Sie in die Abbildung den Graphen von \(F\). Berücksichtigen Sie dabei insbesondere, dass \(F(1) \approx 3{,}5\) und \(\lim \limits_{x\,\to\,+\infty} F(x) = 2\) gilt.

    (3 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(g \colon x \mapsto \dfrac{4}{x}\). Abbildung 1 zeigt den Graphen von \(g\).

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2022Abb. 1

    Berechnen Sie den Wert des Integrals \(\displaystyle \int_1^e g(x)dx\).

    (2 BE)

  • Bestimmen Sie den Funktionswert von \(f\) an der Stelle 1; veranschaulichen Sie Ihr Vorgehen in Abbildung 1.

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{\frac{1}{2}}^{2}g(x)dx\).

    (3 BE)