Mathematik Abitur Bayern 2016

  • Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden \(n\) Personen zufällig ausgewählt.

    Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.

    (4 BE)

  • Im Folgenden ist \(n = 200\). Die Zufallsgröße \(X\) beschreibt die Anzahl der Personen unter den ausgewählten Personen, die an einer Allergie leiden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der binomialverteilten Zufallsgröße \(X\) höchstens um eine Standardabweichung von ihrem Erwartungswert abweicht.

    (5 BE)

  • Aus der Bevölkerung Deutschlands wird eine Person zufällig ausgewählt und getestet. Beschreiben Sie das Ereignis, dessen Wahrscheinlichkeit im Sachzusammenhang mit dem Term \(0{,}09 \cdot 0{,}15 + 0{,}91 \cdot 0{,}35\) berechnet wird.

    (2 BE)

  • In einem kartesischen Koordinatensystem legen die Punkte \(A(6|3|3)\), \(B(3|6|3)\) und \(C(3|3|6)\) das gleichseitige Dreieck \(ABC\) fest.

    Ermitteln Sie eine Gleichung der Ebenen \(E\), in der das Dreieck \(ABC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon x_{1} + x_{2} + x_{3} - 12 = 0\))

    (4 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Begründen Sie, dass das Viereck \(ABA'B'\) ein Quadrat mit der Seitenlänge \(3\sqrt{2}\) ist.

    (4 BE)

  • Der Körper \(ABA'B'CC'\) ist ein sogenanntes Oktaeder. Er besteht aus zwei Pyramiden mit dem Quadrat \(ABA'B'\) als gemeinsamer Grundfläche und den Pyramidenspitzen \(C\) bzw. \(C'\).

    Abbildung zu Teilaufgabe d - Geometrie 1 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Weisen Sie nach, dass das Oktaeder das Volumen 36 besitzt.

    (2 BE)

  • Bestimmen Sie die Größe des Winkels zwischen den Seitenflächen \(ABC\) und \(AC'B\).

    (4 BE)

  • Alle Eckpunkte des Oktaeders liegen auf einer Kugel. Geben Sie eine Gleichung dieser Kugel an.

    Berechnen Sie den Anteil des Oktaedervolumens am Kugelvolumen.

    (3 BE)

  • Für die Fernsehübertragung eines Fußballspiels wird über dem Spielfeld eine bewegliche Kamera installiert. Ein Seilzugsystem, das an vier Masten befestigt wird, hält die Kamera in der gewünschten Position. Seilwinden, welche die Seile koordiniert verkürzen und verlängern, ermöglichen eine Bewegung der Kamera.

    In der Abbildung ist das horizontale Spielfeld modellhaft als Rechteck in der \(x_{1}x_{2}\)-Ebene eines kartesischen Koordinatensystems dargestellt. Die Punkte \(W_{1}\), \(W_{2}\), \(W_{3}\) und \(W_{4}\) beschreiben die Positionen der vier Seilwinden. Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität, d. h. alle vier Seilwinden sind in einer Höhe von 30 m angebracht.

    Abbildung zu Geometrie 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

    Der Punkt \(A(45|60|0)\) beschreibt die Lage des Anstoßpunkts auf dem Spielfeld. Die Kamera befindet sich zunächst in einer Höhe von 25 m vertikal über dem Anstoßpunkt. Um den Anstoß zu filmen, wird die Kamera um 19 m vertikal abgesenkt. In der Abbildung ist die ursprüngliche Kameraposition durch den Punkt \(K_{0}\), die abgesenkte Position durch den Punkt \(K_{1}\) dargestellt.

    Berechnen Sie die Seillänge, die von jeder der vier Seilwinden abgerollt werden muss, um dieses Absenken zu ermöglichen, wenn man davon ausgeht, dass die Seile geradlinig verlaufen.

    (4 BE)

  • Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt \(K_{2}\) beschrieben, die Bewegung der Kamera erfolgt vom Punkt \(K_{1}\) entlang der Geraden mit der Gleichung \(g \colon \overrightarrow{X} = \overrightarrow{K_{1}} + \lambda \cdot \begin{pmatrix} 3 \\ 20 \\ 2 \end{pmatrix}, \, \lambda \in \mathbb R\), zum Punkt \(K_{2}\).

    Bestimmen Sie die Koordinaten von \(K_{2}\).

    (Ergebnis: \(K_{2}(51|100|10)\))

    (3 BE)

  • Im Zielpunkt ist die Kamera zunächst senkrecht nach unten orientiert. Um die Position des Balls anzuvisieren, die im Modell durch den Punkt \(B(40|105|0)\) beschrieben wird, muss die Kamera gedreht werden.

    Berechnen Sie die Größe des erforderlichen Drehwinkels. 

    (4 BE)

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)

  • Bestimmen Sie den Wert \(x \in D\) mit \(f(x) = 2\).

    (2 BE)

  • Im Folgenden gilt beim Öffnen einer Flasche steht \(P(A) = 0{,}05\) und \(P(B) = 0{,}044\).

    Es werden nacheinander zehn Flaschen geöffnet. Berechnen Sie die Wahrscheinlichkeit dafür, dass sich erstmals in der fünften Flasche eine Gewinnmarke befindet. 

    (2 BE)

Seite 4 von 4