Kettenregel

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

    (4 BE)

  • Zusätzlich ist die Funktion \(F\) mit \(F(x) = 2e^{-x} - 2e^{-2x}\) und \(x \in \mathbb R\) gegeben.

    Zeigen Sie, dass \(F\) eine Stammfunktion von \(f\) ist, und begründen Sie anhand des Terms von \(F\), dass \(\lim \limits_{x \, \to \,+\infty} F(x) = 0\) gilt.

    (3 BE)

  • Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(f \colon x \mapsto 2 \cdot \left( \left( \ln{x} \right)^{2} - 1\right)\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\).

    Abbildung Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2018 BAbb. 1

    Zeigen Sie, dass \(x = e^{-1}\) und \(x = e\) die einzigen Nullstellen von \(f\) sind, und berechnen Sie die Koordinaten des Tiefpunkts \(T\) von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \frac{4}{x} \cdot \ln{x}\))

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^{2x}}{x}\) mit dem Definitionsbereich \(D_{f} = \mathbb R \backslash \{0\}\).

    Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.

    (5 BE)

  • Bestimmen Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \((8|g(8))\).

    (4 BE)

  • Zeigen Sie, dass \(F \colon x \mapsto 3x - (x - 1) \cdot \ln{(x - 1)}\) mit Definitionsbereich \(D_{f} = \; ]1; +\infty[\) eine Stammfunktion von \(f\) ist, und bestimmen Sie den Term der Stammfunktion von \(f\), die bei \(x = 2\) eine Nullstelle hat.

    (4 BE)

  • Berechnen Sie die Stelle \(x_{m}\) im Intervall \([2;8]\), an der die lokale Änderungsrate von \(f\) gleich der mittleren Änderungsrate in diesem Intervall ist.

    (5 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (5 BE)

  • Gegeben ist ferner die in \(]-1;+\infty[\) definierte Funktion \(F \colon x \mapsto 4 \cdot \ln{(x + 1)} + \dfrac{4}{x + 1}\).

    Zeigen Sie, dass \(F\) für \(x > -1\) eine Stammfunktion von \(f\) ist.

    (3 BE)

  • Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

    Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

    (zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

    (4 BE)

  • Gegeben ist die Funktion \(h \colon x \mapsto x \cdot \ln{(x^{2})}\) mit maximalem Definitionsbereich \(D_{h}\).

    Geben Sie \(D_{h}\) an und zeigen Sie, dass für den Term der Ableitungsfunktion \(h'\) gilt: \(h'(x) = \ln{(x^{2})} + 2\).

    (2 BE)

  • Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto 1 + 7e^{-0{,}2x}\) mit Definitionsbereich \(\mathbb R_{0}^{+}\); die Abbildung 1 zeigt den Graphen \(G_{f}\).

    Begründen Sie, dass die Gerade mit der Gleichung \(y = 1\) waagrechte Asymptote von \(G_{f}\) ist.
    Zeigen Sie rechnerisch, dass \(f\) streng monoton abnehmend ist.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (3 BE)

  • Für jeden Wert \(s > 0\) legen die Punkte \((0|1)\), \((s|1)\), \((s|f(s))\) und \((0|f(s))\) ein Rechteck mit dem Flächeninhalt \(R(s)\) fest.

    Zeichnen Sie dieses Rechteck für \(s = 5\) in die Abbildung 1 ein.
    Zeigen Sie, dass \(R(s)\) für einen bestimmten Wert von \(s\) maximal ist, und geben Sie diesen Wert von \(s\) an.

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(R(s) = 7s \cdot e^{-0{,}2s}\))

    (7 BE)

  • Bestimmen Sie die momentane Änderungsrate des Flächeninhalts des Algenteppichs zu Beobachtungsbeginn.

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Bestimmen Sie rechnerisch die \(x\)-Koordinaten der beiden Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = (x^{2} - 2x - 1) \cdot e^{-x}\))

    (4 BE)

  • Gemäß der Kettenregel gilt \(g'(x) = f'\left( f(x) \right) \cdot f'(x)\). Ermitteln Sie damit und mithilfe von Abbildung 2 alle Stellen, an denen der Graph von \(g\) eine waagrechte Tangente besitzt.

    (3 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

    Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

    (1 BE)

Seite 2 von 3