Analysis I

  • Zeigen Sie, dass \(F : x \mapsto \frac{1}{4}x^2 \cdot (2\ln x - 1)\) mit Definitionsmenge \(\mathbb R^+\) eine Stammfunktion der in \(\mathbb R^+\) definierten Funktion \(f : x \mapsto x \cdot \ln x\) ist. Bestimmen Sie den Term derjenigen Stammfunktion von \(f\), die in \(x = 1\) eine Nullstelle hat.

    (5 BE)

  • Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

    Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

    (3 BE)

  • Bestimmen Sie rechnerisch die Koordinaten desjenigen Graphenpunkts \(Q_E(x_E|y_E)\), der von \(P\) den kleinsten Abstand hat. Tragen Sie \(Q_E\) in Abbildung 1 ein.

    (zur Kontrolle: \(x_E = 1\))

    (7 BE)

  • Abbildung 2 zeigt den Graphen \(G_g\) einer in \(\mathbb R \backslash \{1\}\) definierten gebrochen-rationalen Funktion \(g\) mit folgenden Eigenschaften:

    • Die Funktion \(g\) hat in \(x = 1\) eine Polstelle ohne Vorzeichenwechsel;

    • \(G_g\) verläuft stets oberhalb seiner schrägen Asymptote, die durch die Gleichung \(y = \frac{1}{2}x - 1\) gegeben ist;

    • die einzige Nullstelle von \(g\) ist \(x = -1\).

    Abbildung 2, Teilaufgabe 2a, Graph der gebrochen-rationalen Funktion g Abb. 2

    Ermitteln Sie mithilfe von Abbildung 2 näherungsweise den Wert der Ableitung \(g'\) von \(g\) an der Stelle \(x = -1\); veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in der Abbildung.

    Aus der Gleichung der schrägen Asymptote ergibt sich unmittelbar das Verhalten der Ableitung \(g'\) für \(x \to +\infty\) und \(x \to -\infty\). Geben Sie dieses Verhalten an und skizzieren Sie den Graphen von \(g'\) in Abbildung 2.

    (6 BE)

  • Weisen Sie nach, dass die Verbindungsstrecke \([PQ_E]\) und die Tangente an \(G_f\) im Punkt \(Q_E\) senkrecht zueinander sind.

    (5 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_f\), der \(x\)-Achse und der Strecke \([PQ_E]\) begrenzt wird.

    (6 BE)

  • Weisen Sie mithilfe einer Stammfunktion die Gültigkeit der Aussage durch Rechnung nach.

    (3 BE)

  • Betrachtet wird nun die Funktion \(h\) mit \(h(x) = \ln(g(x))\). Geben Sie mithilfe des Verlaufs von \(G_g\) die maximale Definitionsmenge \(D_h\) von \(h\), das Verhalten von \(h\) an den Grenzen von \(D_h\) sowie einen Näherungswert für die Nullstelle von \(h\) an.

    (5 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{x + 3}\) mit Definitionsmenge \(D_f\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\), einen beliebigen Punkt \(Q(x|f(x))\) auf \(G_f\) sowie den Punkt \(P(1{,}5|0)\) auf der \(x\)-Achse.

    Abbildung 1 Teilaufgabe 1aAbb. 1

    Begründen Sie, dass \(D_f = [-3;+\infty[\) die maximale Definitionsmenge von \(f\) ist. Wie geht \(G_f\) aus dem Graphen der in \(\mathbb R_0^+\) definierten Funktion \(w : x \mapsto \sqrt{x\;}\;\) hervor?

    (2 BE)

  • Der Graph von \(f\), die \(x\)-Achse und die Gerade \(x = u\) mit \(u \in \mathbb R^+\) schließen für \(0 \leq x \leq u\) ein Flächenstück mit dem Inhalt \(A(u)\) ein.

    Zeigen Sie, dass \(A(u) = 2 - 2e^{-0{,}5u^2}\) gilt. Geben Sie \(\lim \limits_{u \, \to \, + \infty} A(u)\) an und deuten Sie das Ergebnis geometrisch.

    (6 BE)

  • Berechnen Sie die mittlere Änderungsrate \(m_S\) von \(f\) im Intervall \([-0{,}5; 0{,}5]\) sowie die lokale Änderungsrate \(m_T\) an der Stelle \(x = 0\). Berechnen Sie, um wie viel Prozent \(m_S\) von \(m_T\) abweicht.

    (4 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Die Ursprungsgerade \(h\) mit der Gleichung \(y = \frac{2}{e^2} \cdot x\) schließt mit \(G_f\) für \(x \geq 0\) ein Flächenstück mit dem Inhalt \(B\) vollständig ein.

    Berechnen Sie die \(x\)-Koordinaten der drei Schnittpunkte der Geraden \(h\) mit \(G_f\) und zeichnen Sie die Gerade in Abbildung 2 ein. Berechnen Sie \(B\).

    (6 BE)

  • Geben Sie für \(x \in \mathbb R^+\) die Lösungen der folgenden Gleichung an:

    \[(\ln x - 1) \cdot (e^x - 2) \cdot \left( \frac{1}{x} - 3 \right) = 0\]

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [2; + \infty[\)

    (2 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \sqrt{3x + 9}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\) und geben Sie die Nullstelle von \(g\) an.

    (3 BE)

  • Gegeben ist die Funktion \(\displaystyle f : x \mapsto \frac{2x + 3}{4x + 5}\) mit maximaler Definitionsmenge \(D\). Geben Sie \(D\) an und ermitteln Sie einen möglichst einfachen Funktionsterm für die Ableitung \(f'\) von \(f\).

    (4 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

Seite 2 von 3