Analysis I

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Die Anzahl der KInder, die eine Frau im Laufe ihres Lebens durchschnittlich zur Welt bringt, wird durch eine sogenannte Geburtenziffer angegeben, die jedes Jahr statistisch ermittelt wird.

    Die Funktion \(g_{1{,}4} \colon x \mapsto 2x \cdot e^{-0{,}5x^2} + 1{,}4\) beschreibt für \(x \geq 0\) modelhaft die zeitliche Entwicklung der Geburtenziffer in einem europäischen Land. Dabei ist \(x\) die seit dem Jahr 1955 vergangene Zeit in Jahrzehnten (d.h. \(x = 1\) entspricht dem Jahr 1965) und \(g_{1{,}4} (x)\) die Geburtenziffer. Damit die Bevölkerungszahl in diesem Land langfristig näherungsweise konstant bleibt, ist dort eine Geburtenziffer von etwa 2,1 erforderlich.

    Zeichnen Sie den Graphen von \(g_{1{,}4}\) in Abbildung 2 ein und ermitteln Sie graphisch mit angemessener Genauigkeit, in welchem Zeitraum die Geburtenziffer mindestens 2,1 beträgt.

    (4 BE)

  • Welche künftige Entwicklung der Bevölkerungszahl ist auf der Grundlage des Modells zu erwarten? Begründen Sie Ihre Antwort.

    (2 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [-2;2]\)

    (2 BE)

  • Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010.Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form \(N(x) = N_0 \cdot e^{k \cdot (x - 2000)}\) beschreiben, wobei \(N(x)\) die Anzahl der Menschen zu Beginn des Jahres \(x\) ist.

    Bestimmen Sie \(N_0\) und \(k\).

    (5 BE)

  • Ermitteln Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \(P\,(0|3)\).

    (4 BE)

  • Abbildung 1 zeigt den Graphen \(G_f\) einer in \(\mathbb R\) definierten Funktion \(f\).

    Skizzieren Sie in Abbildung 1 den Graphen der in \(\mathbb R\) definierten Integralfunktion \(\displaystyle F \colon x \mapsto \int_1^x f(t)\,dt\). Berücksichtigen Sie dabei mit jeweils angemessener Genauigkeit insbesondere die Nullstellen und Extremstellen von \(F\) sowie \(F(0)\).

    Abbildung 1Abb. 1

    (6 BE)

Seite 3 von 3