Bestimmtes Integral

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Die in \(\mathbb R\) definierte Funktion \(Q\,\colon x \mapsto \frac{16}{17}e^{-\frac{1}{4}x} \cdot \left( \sin x - \frac{1}{4}\cos x \right)\) ist eine Stammfunktion von \(q\).

    Zeigen Sie rechnerisch, dass \(\displaystyle \int_0^{2\pi} q(x)\,dx > 0\) gilt, und deuten Sie die Aussage dieser Ungleichung am Graphen von \(q\).

    (3 BE)

  • Die vordere Seitenfläche des Hinderniselements wird in Teilbereichen der Auf- und Abfahrt als Werbefläche verwendet (vgl. Abbildung 1). Im Modell handelt es sich um zwei Flächenstücke, nämlich um die Fläche zwischen \(G_{f}\) und der \(x\)-Achse im Bereich \(2 \leq x \leq 6\) sowie die dazu symmetrische Fläche im II-Quadranten. Berechnen Sie unter Verwendung der in Aufgabe 1d angegebenen Stammfunktion \(F\), wie viele Quadratmeter als Werbefläche zur Verfügung stehen.

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{2}^{3} f(x)dx\).

    (3 BE)

  • Ist \(g'\) die erste Ableitungsfunktion einer in \(\mathbb R\) definierten Funktion \(g\), so gilt bekanntlich \(\displaystyle \int_u^v g'(x) \cdot e^{g(x)}dx = \left[ e^{g(x)} \right]_u^v\). Berechnen Sie damit den Wert des Terms \(\displaystyle \int_0^1 f(x) dx\).

    (3 BE)

  • Schraffieren Sie in Abbildung 1 ein Flächenstück, dessen Inhalt \(A_{0}\) dem Wert des Integrals \(\displaystyle \int_{e}^{x_{S}} (x - h^{*}(x)) dx\) entspricht, wobei \(x_{S}\) die \(x\)-Koordinate von Punkt \(S\) ist. Der Graph von \(h^{*}\), der Graph der Umkehrfunktion von \(h^{*}\) sowie die beiden Koordinatenachsen schließen im ersten Quadranten ein Flächenstück mit Inhalt \(A\) ein. Geben Sie unter Verwendung von \(A_{0}\) einen Term zur Berechnung von \(A\) an.

    (4 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • Eine zweite Modellierung des Querschnitts der Tunnelwand verwendet eine Kosinusfunktion vom Typ \(k \colon x \mapsto 5 \cdot \cos(c \cdot x)\) mit \(c \in \mathbb R\) und Definitionsbereich \(D_{k} = [-5;5]\), bei der offensichtlich Bedingung II erfüllt ist.

    Bestimmen Sie \(c\) so, dass auch Bedingung I erfüllt ist, und berechnen Sie damit den Inhalt der Querschnittfläche des Tunnels.

    (zur Kontrolle: \(c = \frac{\pi}{10}\), Inhalt der Querschnittfläche: \(\frac{100}{\pi}\) m²)

    (5 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Für \(0 \leq x \leq 5\) gilt, dass der Graph von \(f\) und der Graph einer trigonometrischen Funktion \(h\)

    ●  die gleichen Schnittpunkte mit der \(x\)-Achse besitzen,

    ●  beide nicht unterhalb der \(x\)-Achse verlaufen,

    ●  jeweils mit der \(x\)-Achse eine Fläche des Inhalts \(\frac{625}{72}\) einschließen.

    Bestimmen Sie einen Term einer solchen Funktion \(h\).

    (6 BE)

  • Berechnen Sie durch Integration mithilfe des Näherungswerts von \(a\) einen Näherungswert für den Inhalt des Flächenstücks, das \(G_f\) im ersten Quadranten mit der \(x\)-Achse einschließt.

    (5 BE)

  • Berechnen Sie den Inhalt der Fläche, die von \(G_{f}\) und der Strecke \([AB]\) eingeschlossen wird.

    (5 BE)

  • Interpretieren Sie den folgenden Sachverhalt geometrisch:

    Für jede Stammfunktion \(F\) von \(f\) und für jede reelle Zahl \(w > 2022\) gilt

    \[F(w) - F(0) \approx \int_0^{2022} f(x)dx\]

    (3 BE)

  • Es gibt Werte \(a \in \mathbb R^+\), für die \(\displaystyle \int_0^{a} q(x)\,dx < 0\) gilt. Geben Sie einen solchen Wert an und begründen Sie Ihre Antwort ohne zu rechnen.

    (3 BE)

  • Berechnen Sie \(\displaystyle \int_{2}^{4} g(t)\,dt\) und deuten Sie den Wert des Integrals im Sachzusammenhang.

    (Teilergebnis: Wert des Integrals: 0,5)

    (4 BE)

  • \(G_{f}\) und die \(x\)-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade \(g\) in zwei Teilflächen zerlegt wird. Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen. 

    (6 BE)

  • Bestimmen Sie rechnerisch den Inhalt der Fläche, die der Graph von f, die \(x\)-Achse und die Gerade \(g\) einschließen.

    (4 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Die von der Anlage produzierte elektrische Energie wird vollständig in das Stromnetz eingespeist. Der Hauseigentümer erhält für die eingespeiste elektrische Energie eine Vergütung von 10 Cent pro Kilowattstunde (kWh).

    Die in \([4;20]\) definierte Funktion \(x \mapsto E(x)\) gibt die elektrische Energie in kWh an, die die Anlage am betrachteten Tag von 4:00 Uhr bis x Stunden nach Mitternacht in das Stromnetz einspeist.

    Es gilt \(E'(x) = p(x)\) für \(x \in [4;20]\).

    Bestimmen Sie mithilfe der Abbildung einen Näherungswert für die Vergütung, die der Hauseigentümer für die von 10:00 Uhr bis 14:00 Uhr in das Stromnetz eingespeiste elektrische Energie erhält.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion  \(f \colon x \mapsto -x^2 + 2ax\) mit \(a \in \; ]1;+\infty[\). Die Nullstellen von \(f\) sind \(0\) und \(2a\).

    Zeigen Sie, dass das Flächenstück, das der Graph von \(f\) mit der \(x\)-Achse einschließt, den Inhalt \(\frac{4}{3}a^3\) hat.

    (2 BE) 

Seite 2 von 4