Ableitung der natürlichen Exponentialfunktion

  • Zusätzlich ist die Funktion \(F\) mit \(F(x) = 2e^{-x} - 2e^{-2x}\) und \(x \in \mathbb R\) gegeben.

    Zeigen Sie, dass \(F\) eine Stammfunktion von \(f\) ist, und begründen Sie anhand des Terms von \(F\), dass \(\lim \limits_{x \, \to \,+\infty} F(x) = 0\) gilt.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = 2e^{-x} \cdot \left( 2e^{-x} - 1 \right)\) und \(x \in \mathbb R\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\) sowie die einzige Nullstelle \(x = \ln 2\) von \(f\).

    Abbildung 1 Aufgabe 1 Analysis 2 Mathematik Abitur Bayern 2017 B

     

    Zeigen Sie, dass für den Term der Ableitungsfunktion \(f'\) von \(f\) gilt: \(f'(x) = 2e^{-x} \cdot \left( 1 - 4e^{-x} \right)\).

    (3 BE)

  • Zeigen Sie, dass für die zweite Ableitung \(f''\) von \(f\) die Beziehung \(f''(x) = \frac{1}{4} \cdot f(x)\) für \(x \in \mathbb R\) gilt. Weisen Sie nach, dass \(G_{f}\) linksgekrümmt ist.

    (zur Kontrolle: \(f'(x) = \frac{1}{2} \cdot \left( e^{\frac{1}{2}x} + e^{-\frac{1}{2}x} \right)\))

    (4 BE)

  • Gegeben ist die Funktion \(\displaystyle h \colon x \mapsto \frac{3}{e^{x + 1} - 1}\) mit Definitionsbereich \(D_{h} = ]-1;+\infty[\). Abbildung 2 zeigt den Graphen \(G_{h}\) von \(h\).

    abbildung 2 zu Teilaufgabe 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Begründen Sie anhand des Funktionsterms, das \(\lim \limits_{x \, \to \, +\infty} h(x) = 0\) gilt.

    Zeigen Sie rechnerisch für \(x \in D_{h}\), dass für die Ableitung \(h'\) von \(h\) gilt: \(h'(x) < 0\).

    (4 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Zeigen Sie, dass die in \(\mathbb R\) definierte Funktion \(F\) mit \(F(x) = x^2 \cdot e^x\) eine Stammfunktion von \(f\) ist. Geben eine Gleichung einer weiteren Stammfunktion \(G\) von \(f\) an, für die \(G(1) = 2e\) gilt.

    (3 BE)

  • Zeigen Sie, dass für die erste Ableitung der Funktion \(I_T\) gilt:

    \[I'_T(x) = \frac{x^2 \cdot e^{\frac{x}{T}} \cdot \left [ 3 \cdot \left (1 - e^{-\frac{x}{T}} \right ) - \frac{x}{T} \right ]}{\left ( e^{\frac{x}{T}} - 1 \right )^2}\]

    Vergleichen Sie diesen Term mit dem der Funktion \(f\) aus Aufgabe 1 und begründen Sie, dass die Funktion \(I_T\) bei \(x = a \cdot T\) ihr einziges Maximum besitzt, wenn \(a\) die positive Nullstelle von \(f\) ist.

    (6 BE)

  • Berechnen Sie den Term \(q'(x)\) der ersten Ableitung von \(q\) und weisen Sie für die Funktion \(q\) nach, dass für die Extremstellen \(\tan x = -0{,}25\) gilt. Zeigen Sie damit, dass die Extremstellen von \(q\) nicht mit den Extremstellen der Kosinusfunktion übereinstimmen.

    (6 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(p\,\colon x \mapsto e^{-\frac{1}{4}x}\) und \(q\,\colon x \mapsto e^{-\frac{1}{4}x} \cdot \cos x\). Die Abbildung zeigt den Graphen \(G_q\) von \(q\) füe \(x \geq 0\).

    Abbildung zu Teilaufgabe 2a, Graph der Funktion q

    Untersuchen Sie das Monotonieverhalten des Graphen von \(p\) und geben Sie das Verhalten von \(p\) für \(x \to +\infty\) und \(x \to -\infty\) an.

    (4 BE)

  • Im Modell gibt es einen Zeitpunkt \(x_M\), zu dem die Blumen am schnellsten wachsen. Bestimmen Sie mithilfe von Abbildung 2 einen Näherungswert für \(x_M\). Ermitteln Sie anschließend einen Näherungswert für die maximale Wachstumsrate in Zentimetern pro Tag.

    (5 BE)

  • Berechnen Sie den Inhalt der Fläche, die \(G_f\) mit den Koordinatenachsen und der Geraden \(x = 4\) einschließt.

    (4 BE)

  • Begründen Sie mithilfe des Funktionsterms von \(f\), dass \(\lim \limits_{x \, \to \, -\infty} f(x) = 0\) und \(\lim \limits_{x \, \to \, +\infty} f(x) = 2\) gilt.

    (2 BE)

  • Weisen Sie rechnerisch nach, dass \(G_f\) in \(\mathbb R\) streng monoton steigt.

    (zur Kontrolle: \(f'(x)= \displaystyle \frac{18e^x}{(e^x + 9)^2}\))

    (3 BE)

  • Geben Sie das Verhalten von \(g\) für \(x \to -\infty\) und \(x \to +\infty\) an.

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

     

    Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

    (zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

    (10 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von \(G_f\).

    (zur Kontrolle: \(f'(x) = 2e^{-0{,}5x^2} \cdot (1 - x^2)\,\); y-Koordinate des Hochpunkts: \(\frac{2}{\sqrt{e}}\))

    (6 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Bestimmen Sie einen Näherungswert \(x_1\) für die \(x\)-Koordinate dieses Schnittpunkts, indem Sie für die in \(\mathbb R\) definierte Funktion \(d \colon x \mapsto g(x) - h(x)\) den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_0 = 1\) durchführen.

    (4 BE)

Seite 2 von 2