Gebrochenrationale Funktion

  • Gegeben sind die folgenden Funktionen mit jeweils maximaler Definitionsmenge:

    \[p\,\colon x \mapsto \dfrac{1}{x - 1}\]

    \[q\,\colon x \mapsto \sqrt{x - 1}\]

    \[r\,\colon x \mapsto \ln (x - 1)\]

    Geben Sie jeweils die Definitionsmenge an und untersuchen Sie die Funktionen auf Nullstellen.

    (5 BE)

  • Betrachtet werden die folgenden Funktionsterme mit \(r,s \in \mathbb N\):

    \(e(x) = \sqrt{x - r} \qquad \qquad  \\ \)\(f(x) = \ln x \qquad \qquad \\ \)\(\displaystyle g(x) = -\frac{1}{x} + s\)

    Jeder der Terme beschreibt genau einen der folgenden Funktionsgraphen I,II und III. Ordnen Sie die Terme den Graphen zu und geben Sie die Werte der Parameter \(r\) und \(s\) an; begründen Sie jeweils Ihre Antwort.

    Graph I

    Graph II

    Graph III

    (5 BE)

  • Geben Sie den Term einer gebrochen-rationalen Funktion \(c\) an, die die beiden folgenden Bedingungen erfüllt:

    - Der Graph von \(c\) berührt die \(x\)-Achse an der Stelle \(x = 1\);

    - die Funktion \(c\) hat die Polstelle \(x = 3\).

    (3 BE)

  • Zeigen Sie, dass \(f(x)\) zum Term \(x + 7 + \dfrac{16}{x - 1}\) äquivalent ist, und geben Sie die Bedeutung der Geraden \(g\) mit der Gleichung \(y = x + 7\) für \(G_{f}\) an.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{-x^{2} + 2x}{2x^{2} + 4}\). Ihr Graph wird mit \(G_{k}\) bezeichnet.

    Geben Sie die Nullstellen von \(k\) an und begründen Sie anhand des Funktionsterms, dass \(G_{k}\) die Gerade mit der Gleichung \(y = -0{,}5\) als waagrechte Asymptote besitzt.

    (3 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x^2 + 2x}{x+1}\) mit maximaler Definitionsmenge \(D_f\). Geben Sie \(D_f\) und die Nullstellen von \(f\) an

    (2 BE) 

  • Begründen Sie, dass \(G_{f}\) für \(x < 0\) nur im III. Quadranten verläuft, und zeichnen Sie in die Abbildung den darin fehlenden Teil von \(G_{f}\) ein. Berechnen Sie dazu \(f(-3)\) und drei weitere geeignete Funktionswerte von \(f\).

    (4 BE)

  • Die gebrochen-rationale Funktion \(h \colon x \mapsto 1{,}5x - 4{,}5 + \frac{1}{x}\) mit \(x \in \mathbb R \backslash \{0\}\) stellt in einem gewissen Bereich eine gute Näherung für \(f\) dar.

    Geben Sie die Gleichungen der beiden Asymptoten des Graphen von \(h\) an.

    (2 BE)

  • Geben Sie einen Term einer gebrochen-rationalen Funktion an, die die folgenden Eigenschaften hat: Die Funktion \(h\) ist in \(\mathbb R\) definiert; ihr Graph besitzt die Gerade mit der Gleichung \(y = 3\) als waagrechte Asymptote und schneidet die \(y\)-Achse im Punkt \((0|4)\).

    (3 BE)

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

    (1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

    (2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

    (3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

    (5 BE)

  • Betrachtet wird die Schar der Funktionen \(f_{a,b,c} \,\colon x \mapsto \dfrac{ax + b}{x^{2} + c}\) mit \(a, b, c \in \mathbb R\) und maximaler Definitionsmenge \(D_{a,b,c}\).

    Die Funktion \(f\) aus Aufgabe 1 ist eine Funktion dieser Schar. Geben Sie die zugehörigen Werte von \(a\), \(b\) und \(c\) an.

    (1 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

    (1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

    (2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

    (3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

    (5 BE)

  • Geben Sie für die Funktionen \(f_{1}\) und \(f_{2}\) jeweils die maximale Definitionsmenge und die Nullstelle an.

    \[f_{1} \colon x \mapsto \frac{2x + 3}{x^{2} - 4}\]

    \[f_{2} \colon x \mapsto \ln{(x + 2)}\]

     

    (4 BE)

  • Begründen Sie, dass die \(x\)-Achse horizontale Asymptote von \(G_{f}\) ist, und geben Sie die Gleichungen der vertikalen Asymptoten von \(G_{f}\) an. Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{1}{x + 1} - \frac{1}{x + 3}\) und Definitionsmenge \(D_{f} = \mathbb R \, \backslash \, \{-3;-1\}\). Dr Graph von \(f\) wird mit \(G_{f}\) bezeichnet.

    Zeigen Sie, dass \(f(x)\) zu jedem der drei folgenden Terme äquivalent ist:

    \(\displaystyle \frac{2}{(x + 1)(x + 3)}\); \(\displaystyle \frac{2}{x^2 + 4x + 3}\); \(\displaystyle \frac{1}{0{,}5 \cdot (x + 2)^2 - 0{,}5}\) 

    (4 BE)

  • Die Funktion \(k\) hat in \(x = 2\) eine Nullstelle und in \(x = -3\) eine Polstelle ohne Vorzeichenwechsel. Der Graph von \(k\) hat die Gerade mit der Gleichung \(y = 1\) als Asymptote. 

    (3 BE)

  • Beschreiben Sie, wie man mithilfe der Abbildung für eine Fahrt mit einer Gesamtfahrzeit zwischen zwei und vierzehn Stunden die zugehörige Eigengeschwindigkeit des Boots näherungsweise ermitteln kann. Berechnen Sie auf der Grundlage des Modells die Eigengeschwindigkeit des Boots für eine Fahrt mit einer Gesamtfahrzeit von vier Stunden.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{x^{2} - 1}{x^{2} + 1}\); die Abbildung 1 zeigt ihren Graphen \(G_{f}\).

    Abbildung 1 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    Bestätigen Sie rechnerisch, dass \(G_{f}\) symmetrisch bezüglich der \(y\)-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von \(f\) für \(x \to +\infty\). Bestimmen Sie diejenigen \(x\)-Werte, für die \(f(x) = 0{,}96\) gilt.

    (5 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(p \colon x \mapsto \dfrac{40}{(x - 12)^{2} + 4}\); die Abbildung zeigt den Graphen \(G_{p}\) von \(p\).

    Abbildung Aufgabe 3 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Beschreiben Sie, wie \(G_{p}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(h \colon x \mapsto \dfrac{5}{x^{2} + 4}\) schrittweise hervorgeht, und begründen Sie damit, dass \(G_{p}\) bezüglich der Geraden mit der Gleichung \(x = 12\) symmetrisch ist.

    (4 BE)

Seite 2 von 4