Ebenengleichung in Normalenform in Koordinatendarstellung (Koordinatenform)

  • Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt \(K_{2}\) beschrieben, die Bewegung der Kamera erfolgt vom Punkt \(K_{1}\) entlang der Geraden mit der Gleichung \(g \colon \overrightarrow{X} = \overrightarrow{K_{1}} + \lambda \cdot \begin{pmatrix} 3 \\ 20 \\ 2 \end{pmatrix}, \, \lambda \in \mathbb R\), zum Punkt \(K_{2}\).

    Bestimmen Sie die Koordinaten von \(K_{2}\).

    (Ergebnis: \(K_{2}(51|100|10)\))

    (3 BE)

  • Bestimmen Sie eine Gleichung der Ebene \(E\) in Koordinatenform und zeigen Sie, dass die Gerade \(g\) in \(E\) liegt.

    (zur Kontrolle: \(E \colon 2x_1 - x_2 + 2x_3 + 35 = 0\))

    (5 BE)

  • Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

    (5 BE)

  • Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

    (zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

    (4 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Die Ebene \(N_k\) enthält die \(x_3\)-Achse und den Punkt \(P_k(1-k|k|0)\) mit \(k \in \; ]0;1[\). Welche Kanten des Körpers von \(N_k\) geschnitten werden, ist abhängig von \(k\). Durchläuft \(k\) alle Werte zwischen \(0\) und \(1\), so gibt es Bereiche \(]a;b[\), für die jeweils gilt, dass \(N_k\) für alle Werte von \(k \in \; ]a;b[\) die gleichen Kanten des Körpers schneidet. Bestimmen Sie den größten dieser Bereiche und geben Sie die zugehörigen Kanten an.

    (4 BE) 

  • Die Grundplatte ist gegenüber der Horizontalen um den Winkel \(\alpha\) geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad \(\varphi\) des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^{\circ}\) gelten. Bestimmen Sie, für welchen Breitengrad \(\varphi\) die Sonnenuhr gebaut wurde.

    (4 BE)

  • Abbildung 1 zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem Zifferblatt anzeigt.

    Abbildung 1 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (vgl. Abbildung 2). Dabei beschreibt das Rechteck \(ABCD\) mit \(A\,(5|-4|0)\) und \(B\,(5|4|0)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\,(2{,}5|0|2)\) des Rechtecks \(ABCD\) dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10 cm in der Realität. Die Horizontale wird im Modell durch die \(x_{1}x_{2}\)-Ebene beschrieben.

    Abbildung 2 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Bestimmen Sie die Koordinaten des Punkts \(C\). Ermitteln Sie eine Gleichung der Ebene \(E\), in der das Rechteck \(ABCD\) liegt, in Normalenform.

    (mögliches Teilergebnis: \(E\colon 4x_{1} + 5x_{3} - 20 = 0\))

    (5 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

    (zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

    (3 BE)

  • Ein Fotograf soll für ein Reisemagazin Unterwasserfotos aufnehmen.

    Der Fotograf schwimmt entlang der kürzestmöglichen Strecke von der Uferlinie aus zur Boje. Ermitteln Sie die Länge dieser Strecke.

    (4 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Der einfallende Lichtstrahl wird in demjenigen Punkt des Spiegels reflektiert, der im Modell durch den Punkt \(R\) dargestellt wird. Der reflektierte Lichtstrahl geht für einen Beobachter scheinbar von einer Lichtquelle aus, deren Position im Modell durch den Punkt \(Q\,(0|0|1)\) beschrieben wird (vgl. Abbildung).

    Abbildung zu Teilaufgabe c

    Zeigen Sie, dass die Punkte \(P\) und \(Q\) bezüglich der Ebene \(E\) symmetrisch sind.

    (3 BE)

  • Das Dreieck \(ABC\) stellt modellhaft einen Spiegel dar. Der Punkt \(P\,(2|2|3)\) gibt im Modell die Position einer Lichtquelle an, von der ein Lichtstrahl ausgeht.

    Die Richtung dieses Lichtstrahls wird im Modell durch den Vektor \(\displaystyle \overrightarrow{v} = \begin{pmatrix} -1 \\ -1 \\ -4 \end{pmatrix}\) beschrieben.

    Geben Sie eine Gleichung der Geraden \(g\) an, entlang derer der Lichtstrahl im Modell verläuft. Bestimmen Sie die Koordinaten des Punkts \(R\), in dem \(g\) die Ebene \(E\) schneidet, und begründen Sie, dass der Lichtstrahl auf dem dreieckigen Spiegel auftrifft.

    (zur Kontrolle: \(R\,(1{,}5|1{,}5|1)\))

    (5 BE)

  • Untersuchen Sie rechnerisch, ob die Kugel mit Mittelpunkt \(Z\,(1|6|3)\) und Radius 7 die Ebene \(E\) schneidet.

    (4 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

    Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

    \[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

    (1 BE)

  • Von der Boje aus taucht der Fotograf senkrecht bezüglich der Wasseroberfläche nach unten bis zu einer Stelle, deren Abstand zum Meeresboden genau drei Meter beträgt und im Modell durch den Punkt \(K\) dargestellt wird.

    Bestimmen Sie rechnerisch, welche Tiefe unter der Wasseroberfläche der Fotograf bei diesem Tauchvorgang erreicht.

    (5 BE)

  • Ein Solarmodul wird an einem Metallrohr befestigt, das auf einer horizontalen Fläche senkrecht steht. Das Solarmodul wird modellhaft durch das Rechteck \(ABCD\) dargestellt. Das Metallrohr lässt sich durch eine Strecke, der Befestigungspunkt am Solarmodul durch den Punkt \(M\) beschreiben (vgl. Abbildung). Die horizontale Fläche liegt im Modell in der \(x_{1}x_{2}\)-Ebene des Koordinatensystems; eine Längeneinheit entspricht 0,8 m in der Realität.

    Abbildung Teilaufgabe d Geometrie 1 Mathematik Abitur Bayern 2017 B

     

    Um einen möglichst großen Energieertrag zu erzielen, sollte die Größe des Neigungswinkels \(\varphi\) des Solarmoduls gegenüber der Horizontalen zwischen 30° und 36° liegen. Prüfen Sie, ob diese Bedingung erfüllt ist.

    (3 BE)

Seite 2 von 4