Ebenengleichung in Normalenform in Koordinatendarstellung (Koordinatenform)

  • Der einfallende Lichtstrahl wird in demjenigen Punkt des Spiegels reflektiert, der im Modell durch den Punkt \(R\) dargestellt wird. Der reflektierte Lichtstrahl geht für einen Beobachter scheinbar von einer Lichtquelle aus, deren Position im Modell durch den Punkt \(Q\,(0|0|1)\) beschrieben wird (vgl. Abbildung).

    Abbildung zu Teilaufgabe c

    Zeigen Sie, dass die Punkte \(P\) und \(Q\) bezüglich der Ebene \(E\) symmetrisch sind.

    (3 BE)

  • Das Lot zur Ebene \(E\) im Punkt \(R\) wird als Einfallslot bezeichnet.

    Die beiden Geraden, entlang derer der einfallende und der reflektierte Lichtstrahl im Modell verlaufen, liegen in einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\) in Normalenform. Weisen Sie nach, dass das Einfallslot ebenfalls in der Ebene \(F\) liegt.

    (mögliches Teilergebnis: \(F\,\colon\, x_1 - x_2 = 0\)) 

    (5 BE)

  • Die Punkte \(M\) und \(N\) liegen auf der Geraden
    \(\displaystyle \overrightarrow{X} = \begin{pmatrix} 4{,}8 \\ 8 \\ 7{,}4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}\), \(\mu \in \mathbb R\),
    die im Modell die Neigung der Dachfläche der Gaube festlegt. Die zur \(x_3\)-Achse parallele Strecke \([NL]\) stellt im Modell den sogenannten Gaubenstiel dar; dessen Länge soll 1,4 m betragen. Um die Koordinaten von \(N\) und \(L\) zu bestimmen, wird die Ebene \(F\) betrachtet, die durch Verschiebung von \(E\) um 1,4 in positive \(x_3\)-Richtung entsteht.

    Begründen Sie, dass \(3x_1 + 4x_3 - 49{,}6 = 0\) eine Gleichung von \(F\) ist.

    (3 BE)

  • Bestimmen Sie die Koordinaten von \(N\) und \(L\).

    (Teilergebnis: \(N\,(7{,}2|8|7)\))

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Ebene \(E \colon x_{1} + x_{3} = 2\), der Punkt \(A\left( 0|\sqrt{2}|2 \right)\) und die Gerade \(\displaystyle g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\), \(\lambda \in \mathbb R\), gegeben.

    Beschreiben Sie, welche besondere Lage die Ebene \(E\) im Koordinatensystem hat. Weisen Sie nach, dass die Ebene \(E\) die Gerade \(g\) enthält. Geben Sie die Koordinaten der Schnittpunkte von \(E\) mit der \(x_{1}\)-Achse und mit der \(x_{3}\)-Achse an und veranschaulichen Sie die Lage der Ebene \(E\) sowie den Verlauf der Geraden \(g\) in einem kartesischen Koordinatensystem (vgl. Abbildung).

    Abbildung zu Teilaufgabe a Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    (6 BE)

  • Die \(x_{1}x_{2}\)-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt \(A\) und verläuft entlang der Geraden \(g\). Der Vektor \(\displaystyle \begin{pmatrix} -1 \\ \sqrt{2} \\ 1 \end{pmatrix}\) beschreibt die Fahrtrichtung auf diesem Abschnitt.

    Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.

    (3 BE)

  • An den betrachteten geraden Abschnitt der Achterbahn schließt sich - in Fahrtrichtung gesehen - eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene \(E\) verläuft und den Mittelpunkt \(M \left( 0|3\sqrt{2}|2 \right)\) hat.

    Das Lot von \(M\) auf \(g\) schneidet \(g\) im Punkt \(B\). Im Modell stellt \(B\) den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt. Bestimmen Sie die Koordinaten von \(B\) und berechnen Sie den Kurvenradius im Modell.

    (Teilergebnis: \(B\left( -1|2\sqrt{2}|3 \right)\)) 

    (5 BE)

  • Abbildung 1 zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem Zifferblatt anzeigt.

    Abbildung 1 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (vgl. Abbildung 2). Dabei beschreibt das Rechteck \(ABCD\) mit \(A\,(5|-4|0)\) und \(B\,(5|4|0)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\,(2{,}5|0|2)\) des Rechtecks \(ABCD\) dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10 cm in der Realität. Die Horizontale wird im Modell durch die \(x_{1}x_{2}\)-Ebene beschrieben.

    Abbildung 2 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Bestimmen Sie die Koordinaten des Punkts \(C\). Ermitteln Sie eine Gleichung der Ebene \(E\), in der das Rechteck \(ABCD\) liegt, in Normalenform.

    (mögliches Teilergebnis: \(E\colon 4x_{1} + 5x_{3} - 20 = 0\))

    (5 BE)

  • Die Grundplatte ist gegenüber der Horizontalen um den Winkel \(\alpha\) geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad \(\varphi\) des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^{\circ}\) gelten. Bestimmen Sie, für welchen Breitengrad \(\varphi\) die Sonnenuhr gebaut wurde.

    (4 BE)

  • Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt \(t_{0}\) auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor \(\overrightarrow{u} = \begin{pmatrix} 6 \\ 6 \\ -13 \end{pmatrix}\) dargestellt.

    Weisen Sie nach, dass der Schatten der im Modell durch den Punkt \(S\) dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.

    (6 BE)

  • Die Punkte \(P\) und \(Q\) liegen symmetrisch zu einer Ebene \(F\). Ermitteln Sie eine Gleichung von \(F\).

    (3 BE)

  • Gegeben sind die Ebene \(E \colon 2x_{1} + x_{2} + 2x_{3} = 6\) sowie die Punkte \(P(1|0|2)\) und \(Q(5|2|6)\).

    Zeigen Sie, dass die Gerade durch die Punkte \(P\) und \(Q\) senkrecht zur Ebene \(E\) verläuft.

    (2 BE)

  • In einem kartesischen Koordinatensystem legen die Punkte \(A(6|3|3)\), \(B(3|6|3)\) und \(C(3|3|6)\) das gleichseitige Dreieck \(ABC\) fest.

    Ermitteln Sie eine Gleichung der Ebenen \(E\), in der das Dreieck \(ABC\) liegt, in Normalenform.

    (mögliches Ergebnis: \(E \colon x_{1} + x_{2} + x_{3} - 12 = 0\))

    (4 BE)

  • Kurze Zeit später legt sich ein Torhüter den Ball für einen Abstoß bereit. Der Abstoß soll von der Kamera aufgenommen werden. Durch das gleichzeitige Verlängern beziehungsweise Verkürzen der vier Seile wird die Kamera entlang einer geraden Bahn zu einem Zielpunkt bewegt, der in einer Höhe von 10 m über dem Spielfeld liegt. Im Modell wird der Zielpunkt durch den Punkt \(K_{2}\) beschrieben, die Bewegung der Kamera erfolgt vom Punkt \(K_{1}\) entlang der Geraden mit der Gleichung \(g \colon \overrightarrow{X} = \overrightarrow{K_{1}} + \lambda \cdot \begin{pmatrix} 3 \\ 20 \\ 2 \end{pmatrix}, \, \lambda \in \mathbb R\), zum Punkt \(K_{2}\).

    Bestimmen Sie die Koordinaten von \(K_{2}\).

    (Ergebnis: \(K_{2}(51|100|10)\))

    (3 BE)

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Ermitteln Sie die Koordinaten des Vektors, der sowohl ein Normalenvektor von \(E\) als auch der Ortsvektor eines Punktes der Ebene \(E\) ist.

    (3 BE)

  • Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

    (mögliches Ergebnis: \(E \colon 3x_{1} - x_{2} + 5x_{3} - 5 = 0\))

    (3 BE)

Seite 2 von 4