waagrechte Asymptote

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{x^{2} - 1}{x^{2} + 1}\); die Abbildung 1 zeigt ihren Graphen \(G_{f}\).

    Abbildung 1 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    Bestätigen Sie rechnerisch, dass \(G_{f}\) symmetrisch bezüglich der \(y\)-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von \(f\) für \(x \to +\infty\). Bestimmen Sie diejenigen \(x\)-Werte, für die \(f(x) = 0{,}96\) gilt.

    (5 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

    Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{-x^{2} + 2x}{2x^{2} + 4}\). Ihr Graph wird mit \(G_{k}\) bezeichnet.

    Geben Sie die Nullstellen von \(k\) an und begründen Sie anhand des Funktionsterms, dass \(G_{k}\) die Gerade mit der Gleichung \(y = -0{,}5\) als waagrechte Asymptote besitzt.

    (3 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

    (3 BE)

  • Berechnen Sie \(f(-5)\) und \(f(-1{,}5)\) und skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1.

    (4 BE)

  • Begründen Sie, dass die \(x\)-Achse horizontale Asymptote von \(G_{f}\) ist, und geben Sie die Gleichungen der vertikalen Asymptoten von \(G_{f}\) an. Bestimmen Sie die Koordinaten des Schnittpunkts von \(G_{f}\) mit der \(y\)-Achse.

    (3 BE)

  • Die Funktion \(k\) hat in \(x = 2\) eine Nullstelle und in \(x = -3\) eine Polstelle ohne Vorzeichenwechsel. Der Graph von \(k\) hat die Gerade mit der Gleichung \(y = 1\) als Asymptote. 

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{20x}{x^2 - 25}\) und maximalem Definitionsbereich \(D_f\). Die Abbildung zeigt einen Teil des Graphen \(G_f\) von \(f\).

    Abbildung zu Teilaufgabe 1a

    Zeigen Sie, dass \(D_f = \mathbb R \, \backslash \, \{-5;5\}\) gilt und dass \(G_f\) symmetrisch bezüglich des Koordinatenursprungs ist. Geben Sie die Nullstelle von \(f\) sowie die Gleichungen der drei Asymptoten von \(G_f\) an.

    (5 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h : x \mapsto 6 \cdot e^{-0{,}5x} + 1{,}5\). Die Abbildung zeigt den in \(\mathbb R\) streng monoton fallenden Graphen \(G_h\) von \(h\) sowie dessen Asymptote, die durch die Gleichung \(y = 1{,}5\) gegeben ist.

    Beschreiben Sie, wie \(G_h\) aus dem Graphen der in \(\mathbb R\) definierten natürlichen Exponentialfunktion \(x \mapsto e^x\) hervorgeht.

    Abbildung Teilaufgabe 2a: Exponetialfunktion h, streng monoton fallend, Asymptote =1,5

    (4 BE)

  • Geben Sie den Term einer gebrochen-rationalen Funktion \(f\) mit Definitionsmenge \(\mathbb R \backslash \{-1\}\) an, deren Graph die Gerade mit der Gleichung \(y = 2\) als Asymptote besitzt und in \(x = -1\) eine Polstelle ohne Vorzeichenwechsel hat.

    (3 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [-2;2]\)

    (2 BE)

  • Welche künftige Entwicklung der Bevölkerungszahl ist auf der Grundlage des Modells zu erwarten? Begründen Sie Ihre Antwort.

    (2 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

Seite 2 von 2