Integralfunktion

  • Die als Kurvenlänge \(L_{a;b}\) bezeichnete Länge des Funktionsgraphen von \(f\) zwischen den Punkten \((a|f(a))\) und \((b|f(b))\) mit \(a < b\) lässt sich mithilfe der Formel \(\displaystyle L_{a;b} = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, dx\) berechnen.

    Bestimmen Sie mithilfe der Beziehung aus Aufgabe 1g die Kurvenlänge \(L_{0;b}\) des Graphen von \(f\) zwischen den Punkten \((0|f(0))\) und \((b|f(b))\) mit \(b > 0\).

    (Ergebnis: \(L_{0;b} = e^{\frac{1}{2}b} - e^{-\frac{1}{2}b}\))

    (4 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Zeigen Sie, dass \(\displaystyle F(b) = \int_{3}^{b} f(x) \, dx\) mit \(b \in \mathbb R\) gilt.

    (2 BE)

  • Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

    (3 BE)

  • Gegeben ist ferner die in \(D_{h}\) definierte Integralfunktion \(\displaystyle H_{0} \colon x \mapsto \int_{0}^{x} h(t) \,dt\).

    Begründen Sie ohne weitere Rechnung, dass folgende Aussagen wahr sind:

    α) Der Graph von \(H_{0}\) ist streng monoton steigend.

    β) Der Graph von \(H_{0}\) ist rechtsgekrümmt.

    (4 BE)

  • Geben Sie den Zusammenhang zwischen der Funktion \(F\) und dem Ergebnis der Aufgabe 1e an.

    (1 BE)

  • Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

    Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

    (4 BE)

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion \(f\) an, sodass die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{-1}^x f(t)\,dt\) genau zwei Nullstellen besitzt. Geben Sie die Nullstellen von \(F\) an.

    (3 BE)

  • Warum hat jede Integralfunktion mindestens eine Nullstelle?

    (1 BE)

  • Skizzieren Sie den Graphen von \(F\) in Abbildung 1.

    (2 BE)

  • Abbildung 1Abb. 1

    Abbildung 1 zeigt den Graphen \(G_f\) der Funktion \(f\) mit Definitionsbereich \([-2;2]\). Der Graph besteht aus zwei Halbkreisen, die die Mittelpunkte \((-1|0)\) bzw. \((1|0)\) sowie jeweils den Radius 1 besitzen. Betrachtet wird die in \([-2;2]\) definierte Integralfunktion \(\displaystyle F \colon \mapsto \int_0^x f(t)\,dt\).

    Geben Sie \(F(0)\), \(F(2)\) und \(F(-2)\) an.

    (3 BE)

  • Abbildung 1 zeigt den Graphen \(G_f\) einer in \(\mathbb R\) definierten Funktion \(f\).

    Skizzieren Sie in Abbildung 1 den Graphen der in \(\mathbb R\) definierten Integralfunktion \(\displaystyle F \colon x \mapsto \int_1^x f(t)\,dt\). Berücksichtigen Sie dabei mit jeweils angemessener Genauigkeit insbesondere die Nullstellen und Extremstellen von \(F\) sowie \(F(0)\).

    Abbildung 1Abb. 1

    (6 BE)

Seite 2 von 2