Prüfungsteil B

  • Abbildung 1 zeigt den Körper \(ABCDEFGH\), bei dem die quadratische Grundfläche \(ABCD\) parallel zur quadratischen Deckfläche \(EFGH\) liegt. Der Körper ist symmetrisch sowohl bezüglich der \(x_1x_3\)-Ebene als auch bezüglich der \(x_2x_3\)-Ebene. Außerdem werden die Punkte \(S_k(0|0|k)\) mit \(k \in \; ]7;+\infty[\) betrachtet, die Spitzen von Pyramiden \(EFGHS_k\) sind.

    Abbildung 1 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 1

    Bestimmen Sie rechnerisch denjenigen Wert von \(k\), für den die Pyramide \(EFGHS_k\) den Körper \(ABCDEFGH\) zu einer großen Pyramide \(ABCDS_k\) ergänzt.

    (zur Kontrolle: \(k = 19\))

    (2 BE) 

  • Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(f \colon x \mapsto 2 \cdot \left( \left( \ln{x} \right)^{2} - 1\right)\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\).

    Abbildung Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2018 BAbb. 1

    Zeigen Sie, dass \(x = e^{-1}\) und \(x = e\) die einzigen Nullstellen von \(f\) sind, und berechnen Sie die Koordinaten des Tiefpunkts \(T\) von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \frac{4}{x} \cdot \ln{x}\))

    (5 BE)

  • Spiegelt man die Punkte \(A\), \(B\) und \(C\) am Symmetriezentrum \(Z(3|3|3)\), so erhält man die Punkte \(A'\), \(B'\) bzw. \(C'\).

    Beschreiben Sie die Lage der Ebene, in der die Punkte \(A\), \(B\) und \(Z\) liegen, im Koordinatensystem. Zeigen Sie, dass die Strecke \([CC']\) senkrecht auf dieser Ebene steht.

    (3 BE)

  • Der Marketingchef einer Handelskette plant eine Werbeaktion, bei der ein Kunde die Höhe des Rabatts bei seinem Einkauf durch zweimaliges Drehen an einem Glücksrad selbst bestimmen kann. Das Glücksrad hat zwei Sektoren, die mit den Zahlen 5 bzw. 2 beschriftet sind (vgl. Abbildung).

    Abbildung zu Teilaufgabe 1 Stichhaltig 1 Prüfungsteil B Mathematik Abitur Bayern 2015

     

    Der Rabatt in Prozent errechnet sich als Produkt der beiden Zahlen, die der Kunde bei zweimaligem Drehen am Glücksrad erzielt.

    Die Zufallsgröße \(X\) beschreibt die Höhe dieses Rabatts in Prozent, kann also die Werte 4, 10 oder 25 annehmen. Die zahl 5 wird beim Drehen des Glücksrads mit der Wahrscheinlichkeit \(p\) erzielt.

    Vereinfachend soll davon ausgegangen werden, dass jeder Kunde genau einen Einkauf tätigt und auch tatsächlich am Glücksrad dreht.

    Ermitteln Sie mithilfe eines Baumdiagramms die Wahrscheinlichkeit dafür, dass ein Kunde bei seinem Einkauf einen Rabatt von 10 % erhält.

    (Ergebnis: \(2p - 2p^2\))

    (3 BE)

  • Bestimmen Sie unter Verwendung dieser Binomialverteilung die kleinste Geschwindigkeit \(v^{*}\), für die die folgende Aussage zutrifft: „Bei mehr als 95 % der erfassten Fahrten wird \(v^{*}\) nicht überschritten."

    (2 BE)

  • Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

    (zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

    (4 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind; machen Sie jeweils Ihre Entscheidung plausibel.

    α) \(\lim \limits_{x\,\to\,-\infty} q(x) = +\infty\)

    β) \(\lim \limits_{x\,\to\,+\infty} q(x) = 0\)

    (4 BE)

  • In der Vorderseite der Dachgaube befindet sich ein Fenster. Dem Fenster entspricht im Modell das Flächenstück, das der Graph der Funktion \(g\) mit \(g(x) = ax^4 + b\) und geeigneten Werten \(a,b \in \mathbb R\) mit der \(x\)-Achse einschließt (vgl. Abbildung 3).

    Begründen Sie, dass a negativ und b positiv ist.

    (2 BE) 

  • Nachdem die zwei Millionen Flaschen verkauft sind, wird die Werbeaktion fortgesetzt. Der Getränkehersteller verspricht, dass weiterhin jede 20. Flasche eine Gewinnmarke enthält. Aufgrund von Kundenäußerungen vermutet der Filialleiter eines Getränkemarkts jedoch, dass der Anteil der Saftschorle-Flaschen mit einer Gewinnmarke im Verschluss nun geringer als 0,05 ist, und beschwert sich beim Getränkehersteller.

    Der Getränkehersteller bietet ihm an, anhand von 200 zufällig ausgewählten Flaschen einen Signifikanztest für die Nullhypothese „Die Wahrscheinlichkeit dafür, in einer Flasche eine Gewinnmarke zu finden, beträgt mindestens 0,05." auf einem Signifikanzniveau von 1 % durchzuführen. Für den Fall, dass das Ergebnis des Tests im Ablehnungsbereich der Nullhypothese liegt, verspricht der Getränkehersteller, seine Abfüllanlage zu überprüfen und die Kosten für eine Sonderwerbeaktion des Getränkemarkts zu übernehmen.

    Ermitteln Sie den Ablehnungsbereich der Nullhypothese und bestimmen Sie anschließend unter der Annahme, dass im Mittel nur 3 % der Saftschorle-Flaschen eine Gewinnmarke enthalten, die Wahrscheinlichkeit dafür, dass der Getränkemarkt nicht in den Genuss einer kostenlosen Sonderwerbeaktion kommt.

    (7 BE)

  • Der Punkt \(W\Big(-2\Big|2e^{-\frac{1}{2}}\Big)\) ist einer der beiden Wendepunkte von \(G_f\). Die Tangente an \(G_f\) im Punkt \(W\) wird mit \(w\) bezeichnet. Ermitteln Sie eine Gleichung von \(w\) und berechnen Sie die Stelle, an der \(w\) die \(x\)-Achse schneidet.

    (zur Kontrolle: \(f'(x) = -\frac{1}{2}x \cdot e^{-\frac{1}{8}x^2}\,\))

    (5 BE) 

  • In einem kartesischen Koordinatensystem legen die Punkte \(A\,(4|0|0)\), \(B\,(0|4|0)\) und \(C\,(0|0|4)\) das Dreieck \(ABC\) fest, das in der Ebene \(E\,\colon \, x_1 + x_2 + x_3 = 4\) liegt.

    Bestimmen Sie den Flächeninhalt des Dreiecks \(ABC\).

    (3 BE)

  • Beschreiben Sie, wie man mithilfe der Abbildung für eine Fahrt mit einer Gesamtfahrzeit zwischen zwei und vierzehn Stunden die zugehörige Eigengeschwindigkeit des Boots näherungsweise ermitteln kann. Berechnen Sie auf der Grundlage des Modells die Eigengeschwindigkeit des Boots für eine Fahrt mit einer Gesamtfahrzeit von vier Stunden.

    (5 BE)

  • Auf der Geraden \(t\) wird nun der Punkt \(M\) so festgelegt, dass der Abstand der Dachgaube vom First 1 m beträgt. Bestimmen Sie die Koordinaten von \(M\).

    (3 BE)

  • Der Körper wird so um die Gerade \(AB\) gedreht, dass der mit \(D\) bezeichnete Eckpunkt nach der Drehung in der \(x_1x_2\)-Ebene liegt und dabei eine positive \(x_2\)-Koordinate hat. Die folgenden Rechnungen liefern die Lösung einer Aufgabe im Zusammenhang mit der Drehung:

    \(\begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} \circ \left[ \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \right] = 0 \; \Leftrightarrow \; \lambda = 0{,}8\), d. h. \(S(4{,}8|3{,}6|0)\)

    \(\overrightarrow{T} = \overrightarrow{S} + \vert \overrightarrow{CS} \vert \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)

    Formulieren Sie eine passende Aufgabenstellung und geben Sie die Bedeutung von \(S\) an.

    (3 BE) 

  • Betrachtet wird nun die in \(\mathbb R\) definierte Funktion \(\displaystyle F\,\colon\,x\mapsto \int_{a}^{x}f(t)\,dt\).

    Geben Sie an, welche besonderen Eigenschaften der Graph von \(F\) im Punkt \((a|F(a))\) hat; begründen Sie jeweils Ihre Antwort.

    (4 BE)

  • Im Sachzusammenhang ist neben der Funktion \(f\) die in \(\mathbb R\) definierte Funktion \(s\) mit \(s(x) = \left( \frac{x}{4} \right)^2 \cdot (4 - x)^3 = -\frac{1}{16}x^5 + \frac{3}{4}x^4 - 3x^3 + 4x^2\) von Bedeutung.

    Begründen Sie, dass die folgende Aussage richtig ist:

    Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion \(s\) angegeben werden.

    Bestätigen Sie rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.

    (4 BE) 

  • Der Torwart führt den Abstoß aus. Der höchste Punkt der Flugbahn des Balls wird im Modell durch den Punkt \(H(50|70|15)\) beschrieben.

    Ermitteln Sie eine Gleichung der durch die Punkte \(W_{1}\), \(W_{2}\) und \(K_{2}\) festgelegten Ebene \(E\) in Normalenform und weisen Sie nach, dass \(H\) unterhalb von \(E\) liegt.

    (Mögliches Teilergebnis: \(E \colon x_{2} + 5x_{3} - 150 = 0\))

    (7 BE)

  • \(G_{f}\) und die \(x\)-Achse schließen im IV. Quadranten ein Flächenstück ein, das durch die Gerade \(g\) in zwei Teilflächen zerlegt wird. Berechnen Sie das Verhältnis der Flächeninhalte dieser beiden Teilflächen. 

    (6 BE)