Prüfungsteil B

  • Geben Sie für die Funktion \(h\) und deren Ableitungsfunktion \(h'\) jeweils das Verhalten für \(x \to 0\) an und zeichnen Sie \(G_{h}\) im Bereich \(0 < x < 0{,}75\) in Abbildung 1 ein.

    (3 BE)

  • Die Funktion \(h^{*}\colon x \mapsto h(x)\) mit Definitionsmenge \([1;+\infty[\) unterscheidet sich von der Funktion \(h\) nur hinsichtlich der Definitionsmenge. Im Gegensatz zu \(h\) ist die Funktion \(h^{*}\) umkehrbar.

    Geben Sie die Definitionsmenge und die Wertemenge der Umkehrfunktion \(h^{*}\) an. Berechnen Sie die Koordinaten des Schnittpunkts \(S\) des Graphen von \(h^{*}\) und der Geraden mit der Gleichung \(y = x\).

    (Teilergebnis: \(x\)-Koordinate des Schnittpunkts: \(e^{\frac{4}{3}}\))

    (4 BE)

  • Zeichnen Sie den Graphen der Umkehrfunktion von \(h^{*}\) unter Verwendung der bisherigen Ergebnisse, insbesondere der Lage von Punkt \(S\), in Abbildung 1 ein.

    (3 BE)

  • Schraffieren Sie in Abbildung 1 ein Flächenstück, dessen Inhalt \(A_{0}\) dem Wert des Integrals \(\displaystyle \int_{e}^{x_{S}} (x - h^{*}(x)) dx\) entspricht, wobei \(x_{S}\) die \(x\)-Koordinate von Punkt \(S\) ist. Der Graph von \(h^{*}\), der Graph der Umkehrfunktion von \(h^{*}\) sowie die beiden Koordinatenachsen schließen im ersten Quadranten ein Flächenstück mit Inhalt \(A\) ein. Geben Sie unter Verwendung von \(A_{0}\) einen Term zur Berechnung von \(A\) an.

    (4 BE)

  • Abbildung 2 zeigt den Graphen einer in \([0;16]\) definierten Funktion \(V \colon t \mapsto V(t)\). Sie beschreibt modellhaft das sich durch Zu- und Abfluss ändernde Volumen von Wasser in einem Becken in Abhängigkeit von der Zeit. Dabei bezeichnet \(t\) die seit Beobachtungsbeginn vergangene Zeit in Stunden und \(V(t)\) das Volumen in Kubikmetern.

    Abbildung 2 Aufgabe 2 Analysis 1 Mathematik Abitur Bayern 2017 B

    Geben Sie mithilfe von Abbildung 2 jeweils näherungsweise das Volumen des Wassers fünf Stunden nach Beobachtungsbeginn sowie den Zeitraum an, in dem das Volumen mindestens 450 m³ beträgt.

    (2 BE)

  • Bestimmen Sie anhand des Graphen der Funktion \(V\) näherungsweise die momentane Änderungsrate des Wasservolumens zwei Stunden nach Beobachtungsbeginn.

    (3 BE)

  • Erläutern Sie, was es im Sachzusammenhang bedeutet, wenn für ein \(t \in [0;10]\) die Beziehung \(V(t + 6) = V(t) - 350\) gilt. Entscheiden Sie mithilfe von Abbildung 2, ob für \(t = 5\) diese Beziehung gilt, und begründen Sie Ihre Entscheidung.

    (3 BE)

  • In einem anderen Becken ändert sich das Volumen des darin enthaltenen Wassers ebenfalls durch Zu- und Abfluss. Die momentane Änderungsrate des Volumens wird für \(0 \leq t \leq 12\) modellhaft durch die in \(\mathbb R\) definierte Funktion \(g \colon t \mapsto 0{,}4 \cdot (2t^{3} - 39t^{2} + 180t)\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Stunden und \(g(t)\) die momentane Änderungsrate des Volumens in \(\frac{\sf{m^{3}}}{\sf{h}}\).

    Begründen Sie, dass die Funktionswerte von \(g\) für \(0 < t < 7{,}5\) positiv und für \(7{,}5 < t < 12\) negativ sind.

    (4 BE)

  • Erläutern Sie die Bedeutung des Werts des Integrals \(\displaystyle \int_{a}^{b} g(t) dt\) für \(0 \leq a < b \leq 12\) im Sachzusammenhang. Berechnen Sie das Volumen des Wassers, das sich 7,5 Stunden nach Beobachtungsbeginn im Becken befindet, wenn zu Beobachtungsbeginn 150 m³ Wasser im Becken waren. Begründen Sie, dass es sich hierbei um das maximale Wasservolumen im Beobachtungszeitraum handelt.

    (6 BE)

  • Gegeben ist die Funktion \(f\) mit \(f(x) = 2e^{-x} \cdot \left( 2e^{-x} - 1 \right)\) und \(x \in \mathbb R\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\) sowie die einzige Nullstelle \(x = \ln 2\) von \(f\).

    Abbildung 1 Aufgabe 1 Analysis 2 Mathematik Abitur Bayern 2017 B

     

    Zeigen Sie, dass für den Term der Ableitungsfunktion \(f'\) von \(f\) gilt: \(f'(x) = 2e^{-x} \cdot \left( 1 - 4e^{-x} \right)\).

    (3 BE)

  • Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

    (Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

    (4 BE)

  • Zusätzlich ist die Funktion \(F\) mit \(F(x) = 2e^{-x} - 2e^{-2x}\) und \(x \in \mathbb R\) gegeben.

    Zeigen Sie, dass \(F\) eine Stammfunktion von \(f\) ist, und begründen Sie anhand des Terms von \(F\), dass \(\lim \limits_{x \, \to \,+\infty} F(x) = 0\) gilt.

    (3 BE)

  • Der Graph von \(F\) verläuft durch den Punkt \((\ln 2|0{,}5)\). Begründen Sie ohne weitere Rechnung, dass \(F\) keine größeren Werte als \(0{,}5\) annehmen kann und bei \(x = \ln 4\) eine Wendestelle besitzt. Berechnen Sie die \(y\)-Koordinate des zugehörigen Wendepunkts.

    (5 BE)

  • Zeichnen Sie den Graphen von \(F\) unter Berücksichtigung der bisherigen Ergebnisse sowie des Funktionswerts \(F(0)\) im Bereich \(-0{,}3 \leq x \leq 3{,}5\) in Abbildung 1 ein.

    (4 BE)

  • Der Graph von \(f\) schließt mit den Koordinatenachsen ein Flächenstück ein, das durch das Dreieck mit den Eckpunkten \(O(0|0)\), \(P(\ln 2|0)\) und \(Q(0|2)\) angenähert werden kann. Berechnen Sie, um wie viel Prozent der Flächeninhalt des Dreiecks \(OPQ\) vom Inhalt des Flächenstücks abweicht.

    (4 BE)

  • Betrachtet wird nun die Integralfunktion \(F_{0}\) mit \(F_{0}(x) = \displaystyle \int_{0}^{x} f(t) dt\) und \(x \in \mathbb R\).

    Begründen Sie, dass \(F_{0}\) mit der betrachteten Stammfunktion \(F\) von \(f\) übereinstimmt. Interpretieren Sie geometrisch den Wert \(F_{0}(2) \approx 0{,}234\) mithilfe von in Abbildung 1 geeignet zu markierenden Flächenstücken.

    (4 BE)

  • Geben Sie den Term einer in \(\mathbb R\) definierten Funktion an, die eine Stammfunktion, aber keine Integralfunktion von \(f\) ist.

    (2 BE)

  • Zur Modellierung einer Zerfallsreihe wird vereinfachend davon ausgegangen, dass sich in einem Gefäß zu Beginn eines Beobachtungszeitraums ausschließlich der radioaktive Stoff Bi 211 befindet. Jeder Atomkern dieses Stoffs Bi 211 wandelt sich irgendwann in einen Kern des radioaktiven Stoffs Tl 207 um und dieser wiederum irgendwann in einen Kern des radioaktiven Stoffs Pb 207. Abbildung 2 zeigt diese Zerfallsreihe schematisch.

    Abbildung 2 Aufgabe 2 Analysis 2 Mathematik Abitur Bayern 2017 B

    Der Zeitliche Verlauf des Bi 211-Anteils, des Tl 207-Anteils und des Pb 207-Anteils der Kerne im Gefäß lässt sich durch die in \(\mathbb R\) definierten Funktionen \(B\), \(F\) bzw. \(P\) beschreiben, deren Terme der folgenden Tabelle zu entnehmen sind. Dabei ist \(F\) die in Aufgabe 1 betrachtete Funktion.

    Tabelle Aufgabe 2 Analysis 2 Mathematik Abitur Bayern 2017 B

    Für jede der drei Funktionen bezeichnet \(x \geq 0\) die seit Beobachtungsbeginn vergangene Zeit in der Einheit 6 Minuten. Beispielsweise bedeutet \(P(1) \approx 0{,}400\), dass sechs Minuten nach Beobachtungsbeginn etwa 40,0 % aller Kerne im Gefäß Pb 207-Kerne sind.

    Bestimmen Sie jeweils auf zehntel Prozent genau die Anteile der drei Kernsorten zwölf Minuten nach Beobachtungsbeginn.

    (4 BE)

  • Ermitteln Sie unter Verwendung von Ergebnissen aus Aufgabe 1 den Zeitpunkt auf Sekunden genau, zu dem der Anteil von Tl 207-Kernen im Gefäß am größten ist.

    (2 BE)

  • Begründen Sie rechnerisch, dass zu keinem Zeitpunkt die Anteile der drei Kernsorten gleich groß sind.

    (3 BE)