Prüfungsteil B

  • Das Glücksrad wird zweimal gedreht. Untersuchen Sie, ob die Ereignisse \(C\) und \(D\) stochastisch unabhängig sind.

    \(C\): „Die Summe der erzielten Zahlen ist kleiner als 4."

    \(D\): „Das Produkt der erzielten Zahlen ist 2 oder 3."

    (5 BE) 

  • Geben Sie \(f(8)\) an und zeichnen Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein.

    (4 BE)

  • Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

    (zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

    (5 BE)

  • Das Laplace-Gymnasium veranstaltet auf dem Sportplatz ein Fußballturnier für die neuen 5. Klassen.

    An dem Turnier nehmen neun Mannschaften teil. Die Mannschaften bestehen jeweils aus Jungen und Mädchen, wobei zwei Drittel aller mitspielenden Kinder männlich sind.

    Die drei Spielführerinnen und die sechs Spielführer der Fußballmannschaften stellen sich in einer Reihe für ein Foto auf. Bestimmen Sie die Anzahl der Möglichkeiten für die Aufstellung der neun Kinder, wenn die drei Spielführerinnen nebeneinanderstehen sollen.

    (3 BE)

  • Im Rahmen der Begrüßung durch die Schulleiterin werden aus allen Spielerinnen und Spielern zunächst zehn Kinder ausgelost, die je einen Fußball erhalten sollen. Um die Wahrscheinlichkeit dafür zu berechnen, dass fünf Mädchen und fünf Jungen einen Ball erhalten, verwendet Max den Ansatz

    \(\binom{10}{5} \cdot \left( \frac{2}{3} \right)^{5} \cdot \left( \frac{1}{3} \right)^{5}\).

    Geben Sie an, ob Max dabei vom Modell „Ziehen mit Zurücklegen" oder vom Modell „Ziehen ohne Zurücklegen" ausgeht. Begründen Sie rechnerisch unter Zugrundelegung eines im Sachkontext realistischen Zahlenwerts für die Gesamtzahl der Spielerinnen und Spieler, dass die von Max berechnete Wahrscheinlichkeit nur geringfügig von der tatsächlichen Wahrscheinlichkeit abweicht.

    (5 BE)

  • Neben dem Fußballturnier werden für die Schülerinnen und Schüler auch ein Elfmeterschießen und ein Torwandschießen angeboten.

    Dafür konnten sich Kinder in zwei Listen eintragen. 45 % der Kinder haben sich sowohl für das Torwandschießen als auch für das Elfmeterschießen eingetragen, 15 % haben sich nur für das Elfmeterschießen eingetragen. 90 % der Kinder, die sich für das Torwandschießen eingetragen haben, haben sich auch für das Elfmeterschießen eingetragen. Aus den Kindern wird eines zufällig ausgewählt. Betrachtet werden die folgenden Ereignisse:

    \(T\): „Das Kind hat sich für das Torwandschießen eingetragen."

    \(E\): „das Kind hat sich für das Elfmeterschießen eingetragen."

    Untersuchen Sie die Ereignisse \(T\) und \(E\) auf stochastiche Unabhängigkeit.

    (4 BE)

  • Drücken Sie jedes der beiden folgenden Ereignisse unter Verwendung der Mengenschreibweise durch \(\mathbf{T}\) und \(\mathbf{E}\) aus.

    \(A\): „Das Kind hat sich in keine der Listen eingetragen."

    \(B\): „Das Kind hat sich in genau eine Liste eingetragen."

    (3 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Ein Autozulieferer hat zwei Betriebsstandorte A und B. Die Zahl der Beschäftigten am Standort A ist viermal so groß wie am Standort B. 60 % aller Beschäftigten des Autozulieferers haben sich für den Kauf eines Jobtickets entschieden, mit dem die Firma die Nutzung des öffentlichen Personennahverkehrs für den Weg zur Arbeit fördert.

    Bestimmen Sie unter der Annahme, dass der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten gleich ist, die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers am Standort B arbeitet und kein Jobticket besitzt.

    (2 BE) 

  • Geben Sie den maximalen Definitionsbereich des Terms \(f'(x) = \dfrac{10 - 2x}{\sqrt{10x - x^2}}\) an. Bestimmen Sie \(\lim \limits_{x\,\to\,0}f'(x)\) und deuten Sie das Ergebnis geometrisch.

    (4 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{-2;2\}\) definierte Funktion \(f \colon x \mapsto \dfrac{6x}{x^{2} - 4}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet und ist symmetrisch bezüglich des Koordinatenursprungs.

    Geben Sie die Gleichungen aller senkrechter Asymptoten von \(G_{f}\) an. Begründen Sie, dass \(G_{f}\) die \(x\)-Achse als waagrechte Asymptote besitzt.

    (3 BE)

  • Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

    (3 BE)

  • Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

    (6 BE)

  • Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

    Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

    (zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

    (5 BE)

  • Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

    (zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

    (3 BE)

  • Die Abbildung 2 zeigt den Grundriss des Hallenmodells in der \(x_{1}x_{2}\)-Ebene. Stellen Sie unter Verwendung der bisherigen Ergebnisse den Schattenbereich der Flutlichtanlage in der Abbildung exakt dar.

    Abbildung 2 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    (4 BE)

  • In Deutschland waren zu Beginn des Jahres 2021 etwa 320 000 Pkw mit rein elektrischem Antrieb und 280 000 Plug-in-Hybride zugelassen, also insgesamt 600 000 Pkw mit Elektromotor. Der Anteil der Pkw mit Elektromotor am Gesamtbestand aller in Deutschland zugelassenen Pkw betrug rund 1,2 %. Bestimmen Sie die Anzahl der Pkw, die aus diesem Gesamtbestand mindestens zufällig ausgewählt werden müssen, damit mit einer Wahrscheinlichkeit von mehr als 97 % mindestens ein Pkw mit rein elektrischem Antrieb darunter ist.

    (5 BE) 

  • Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 2 gezeigten Graphen dargestellt. Dabei ist \(x\) die nach 06:00 Uhr vergangene Zeit in Stunden und \(y\) die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 2

    Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der Abbildung 2, begründen Sie Ihre Markierung und veranschaulichen Sie Ihre Begründung in der Abbildung 2.

    (3 BE) 

  • Durch die Rotation des Vierecks \(MTSF\) um die Gerade \(MS\) entsteht ein Körper. Beschreiben Sie diesen Körper.

    In einer Formelsammlung ist zur Berechnung des Volumens eines solchen Körpers die Formel \(V = \frac{1}{3} \cdot \left( \frac{a}{2} \right)^{2} \cdot \pi \cdot b\) zu finden. Geben Sie für den beschriebenen Körper die Strecken an, deren Längen für \(a\) bzw. \(b\) einzusetzen sind.

    (4 BE)

  • Weisen Sie nach, dass die Gerade \(g\) die Kugel \(K\) im Punkt \(T(3|12|-2)\) berührt.

    (5 BE)