Prüfungsteil B

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(h_{k} \colon x \mapsto (1 - kx^{2}) \cdot e^{-x}\) mit \(k \in \mathbb R\). Der Graph von \(h_{k}\) wird mit \(G_{k}\) bezeichnet. Für \(k = 1\) ergibt sich die bisher betrachtetet Funktion \(f\).

    Geben Sie in Abhängigkeit von \(k\) die Anzahl der Nullstellen von \(h_{k}\) an.

    (2 BE)

  • Der Punkt \(W\Big(-2\Big|2e^{-\frac{1}{2}}\Big)\) ist einer der beiden Wendepunkte von \(G_f\). Die Tangente an \(G_f\) im Punkt \(W\) wird mit \(w\) bezeichnet. Ermitteln Sie eine Gleichung von \(w\) und berechnen Sie die Stelle, an der \(w\) die \(x\)-Achse schneidet.

    (zur Kontrolle: \(f'(x) = -\frac{1}{2}x \cdot e^{-\frac{1}{8}x^2}\,\))

    (5 BE) 

  • Ohne Kenntnis des Erwartungswerts ist die Varianz in der Regel nicht aussagekräftig. Daher wird für den Vergleich verschiedener Zufallsgrößen oft der Quotient aus der Standardabweichung und dem Erwartungswert betrachtet, der als relative Standardabweichung bezeichnet wird.

    Die Zufallsgröße \(Y_{n}\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln von \(n\) Losen sichtbar werden. Es gilt \(E(Y_{n}) = n\) und \(Var(Y_{n}) = n\). Bestimmen Sie den Wert von \(n\), für den die relative Standardabweichung 5 % beträgt.

    (2 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(g \colon x \mapsto \dfrac{e^{x}}{e^{x} + 1}\). Ihr Graph wird mit \(G_{g}\) bezeichnet.

    Zeigen Sie, dass \(g\) streng monoton zunehmen ist und die Wertemenge \(]0;1[\) besitzt.

    (zur Kontrolle: \(g'(x) = \dfrac{e^{x}}{(e^{x} + 1)^{2}}\))

    (5 BE)

  • Geben Sie \(g'(0)\) an un zeichnen Sie \(G_{g}\) im Bereich \(-4 \leq x \leq 4\) unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass \(G_{g}\) in \(W(0|g(0))\) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

    (3 BE)

  • Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

    (2 BE)

  • Es wird das Flächenstück zwischen \(G_{g}\) und der \(x\)-Achse im Bereich \(-\ln{3} \leq x \leq b\) mit \(b \in \mathbb R^{+}\) betrachtet. Bestimmen Sie den Wert von \(b\) so. dass die \(y\)-Achse dieses Flächenstück halbiert.

    (6 BE)

  • An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse \(A\) und \(B\), deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen:

    \[P(A) = \frac{6 \cdot 5 \cdot 4 \cdot 3}{6^{4}}; \enspace P(B) = \frac{6}{6^{4}}\]

    (3 BE)

  • Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 15 % der Familien dieses Angebot. Die Zufallsgröße \(X\) beschreibt die Anzahl der Bollerwagen, die von den ersten 200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße \(X\) binomialverteilt ist.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 25 Bollerwaagen ausgeliehen werden. 

    (2 BE)

  • Das Saarpolygon wird mit verschiedenen Blickrichtungen betrachtet. Die Abbildungen 3 und 4 stellen das Saarpolygon für zwei Blickrichtungen schematisch dar.

     

    Abbildung 3 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 3

    Abbildung 4 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2022Abb. 4

     

    Geben Sie zu jeder der beiden Abbildungen 3 und 4 einen möglichen Vektor an, der die zugehörige Blickrichtung beschreibet. Stellen Sie das Saarpolygon schematisch für eine Betrachtung von oben dar.

    (4 BE)

  • Bei einer Werbeaktion werden den Fruchtgummitüten Rubbellose beigelegt. Beim Freirubbeln werden auf dem Los bis zu drei Goldäpfel sichtbar. Die Zufallsgröße \(X\) beschreibt die Anzahl der Goldäpfel, die beim Freirubbeln sichtbar werden. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(X\).

    Tabelle Aufgabe 4 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2021

    Die Zufallsgröße \(X\) hat den Erwartungswert 1. Bestimmen Sie die Wahrscheinlichkeiten \(p_{0}\) und \(p_{1}\) und berechnen Sie die Varianz von \(X\).

    (3 BE)

  • Abbildung Aufgabe 3 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Der Freizeitpark veranstaltet ein Glücksspiel, bei dem Eintrittskarten für den Freizeitpark gewonnen werden können. Zu Beginn des Spiels wirft man einen Würfel, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind. Erzielt man dabei die Zahl 6, darf man anschließend einmal an einem Glücksrad mit drei Sektoren drehen (vgl. schematische Abbildung). Wird Sektor K erzielt, gewinnt man eine Kinderkarte im Wert von 28 Euro, bei Sektor E eine Erwachsenenkarte im Wert von 36 Euro. Bei Sektor N geht man leer aus. Der Mittelpunktswinkel des Sektors N beträgt 160°. Die Größen der Sektoren K und E sind so gewählt, dass pro Spiel der Gewinn im Mittel drei Euro beträgt. Bestimmen Sie die Größe der Mittelpunktswinkel der Sektoren K und E.

    (6 BE)

  • Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus \(n\) verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat.

    Ein Kind holt sich drei Anstecker aus dem Automaten.

    Bestimmen Sie für den Fall \(n = 5\) die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben.

    (2 BE)

  • Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert \(\dfrac{(n - 1) \cdot (n - 2)}{n^{2}}\) hat.

    (2 BE)

  • Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 90 % ist.

     (3 BE)

  • Ein Süßwarenunternehmen stellt verschiedene Sorten Fruchtgummis her.

    Luisa nimmt an einer Betriebsbesichtigung des Unternehmens teil. Zu Beginn der Führung bekommt sie ein Tütchen mit zehn Gummibärchen, von denen fünf weiß. zwei rot und drei grün sind. Luisa öffnet das Tütchen und nimmt, ohne hinzusehen, drei Gummibärchen heraus. Berechnen Sie die Wahrscheinlichkeit dafür, dass die drei Gummibärchen die gleiche Farbe haben.

    (3 BE)

  • Vor dem Verpacken werden die verschiedenfarbigen Gummibärchen in großen Behältern gemischt, wobei der Anteil der roten Gummibärchen 25 % beträgt. Ein Verpackungsautomat füllt jeweils 50 Gummibärchen aus einem der großen Behälter in eine Tüte.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass in einer zufällig ausgewählten Tüte mehr als ein Drittel der Gummibärchen rot ist.

    (3 BE)

  • Die Ebene \(E\) teilt den Quader in zwei Teilkörper. Bestimmen Sie den Anteil des Volumens des pyramidenförmigen Teilkörpers am Volumen des Quaders, ohne die Volumina zu berechnen.

    (3 BE)

  • Beschreiben Sie die Bedeutung des Terms \(1 - P_{\overline{V}}(R)\) im Sachzusammenhang.

    (2 BE)

  • Das Süßwarenunternehmen produziert auch zuckerreduzierte und vegane Fruchtgummis und bringt diese in entsprechend gekennzeichneten Tüten in den Handel.

    Der Anteil der nicht als vegan gekennzeichneten Tüten ist dreimal so groß wie der Anteil der Tüten, die als vegan gekennzeichnet sind. 42 % der Tüten, die als vegan gekennzeichnet sind, sind zusätzlich auch als zuckerreduziert gekennzeichnet. Insgesamt sind 63 % der Tüten weder als vegan noch als zuckerreduziert gekennzeichnet.

    Betrachtet werden folgende Ereignisse:

    \(V\): „Eine zufällig ausgewählte Tüte ist als vegan gekennzeichnet."

    \(R\): „Eine zufällig ausgewählte Tüte ist als zuckerreduziert gekennzeichnet."

    Bestimmen Sie die Wahrscheinlichkeit des Ereignisses \(\overline{R}\).

    (3 BE)