Prüfungsteil B

  • Zeichnen Sie die sechs Punkte, in denen \(M\) die Kanten des Würfels schneidet, sowie die sechseckige Schnittfigur in die Abbildung ein.

    (3 BE)

  • Die Ebene \(M\,\colon\; x_1 - x_2 + x_3 = 3\) schneidet den Würfel in einem regulären Sechseck.

    Begründen Sie, dass \(M\) parallel zu \(L\) ist. Geben Sie die Schnittpunkte von \(M\) mit der \(x_1\)-Achse sowie mit der \(x_3\)-Achse an und weisen Sie nach, dass \(M\) den Mittelpunkt der Strecke \([BC]\) enthält.

    (4 BE)

  • Der Würfel wird entlang der Ebene \(L\) geteilt. Berechnen Sie das Volumen der entstehenden Pyramide. Geben Sie an, wie viel Prozent des Würfelvolumens die Pyramide einnimmt. 

    (4 BE)

  • Die Abbildung zeigt einen Würfel der Kantenlänge 6. Die Koordinaten der Eckpunkte \(A\,(0|0|0)\), \(D\,(0|6|0)\) und \(G\,(6|6|6)\) sind gegeben.

    Abbildung zur Aufgabengruppe Geometrie 2, Würfel der Kantenlänge 6

    Die Punkte \(B\), \(E\) und \(G\) liegen in einer Ebene \(L\). Bestimmen Sie eine Gleichung von \(L\) in Normalenform. Zeichnen Sie die Figur, in der die Ebene \(L\) den Würfel schneidet, in die Abbildung ein.

    (mögliches Ergebnis: \(L\,\colon\; x_1 - x_2 + x_3 = 6\))

    (5 BE)

  • Gegeben ist die Funktion \(f\,\colon x \mapsto 2 - \sqrt{12-2x}\) mit maximaler Definitionsmenge \(D_f = \; ]-\infty;6]\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_f\) mit den Koordinatenachsen. Bestimmen Sie das Verhalten von \(f\) für \(x \to -\infty\) und geben Sie \(f(6)\) an.

    (5 BE)

  • Der Graph der in \(\mathbb R\) definierten Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2x + 4\) ist die Parabel \(G_h\). Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion \(f^{-1}\) ist ein Teil dieser Parabel.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_h\) mit der durch die Gleichung \(y = x\) gegebenen Winkelhalbierenden \(w\) des I. und III. Quadranten.

    (Teilergebnis: x-Koordinaten der Schnittpunkte: -2 und 4)

    (3 BE)

  • Zeichnen Sie die Parabel \(G_h\) - unter Berücksichtigung des Scheitels - im Bereich \(-2 \leq x \leq 4\) in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von \(G_h\) an der Winkelhalbierenden \(w\), so entsteht eine herzförmige Figur; ergänzen Sie Ihre Zeichnung dementsprechend.

    (4 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Ermitteln Sie die Gleichung der Tangente an \(G_h\) im Punkt \((-2|h(-2))\). Berechnen Sie den Wert, den das Modell für die Größe des Winkels liefert, den die Blattränder an der Blattspitze einschließen.

    (6 BE)

  • Bestimmen Sie den Term der Ableitungsfunktion \(f'\) von \(f\) und geben Sie die maximale Definitionsmenge von \(f'\) an.

    Bestimmen Sie  \(\lim \limits_{x \, \to \, 6} f'(x)\) und beschreiben Sie, welche Eigenschaft von \(G_f\) aus diesem Ergebnis folgt.

    (zur Kontrolle: \(\displaystyle f'(x) = \frac{1}{\sqrt{12 - 2x}}\))

    (5 BE)

  • Geben Sie das Monotonieverhalten von \(G_f\) und die Wertemenge von \(f\) an.

    (2 BE)

  • Geben Sie \(f(-2)\) an und zeichnen Sie \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein (Platzbedarf im Hinblick auf die folgenden Aufgaben: \(-3 \leq y \leq 7\)).

    (3 BE)

  • Die Funktion \(f\) ist in \(D_f\) umkehrbar. Geben Sie die Definitionsmenge der Umkehrfunktion \(f^{-1}\) von \(f\) an und zeigen Sie, dass \(f^{-1} (x) = -\frac{1}{2}x^2 + 2x + 4\) gilt.

    (4 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Gegeben ist die Funktion \(f\) mit \(\displaystyle f(x) = \frac{20x}{x^2 - 25}\) und maximalem Definitionsbereich \(D_f\). Die Abbildung zeigt einen Teil des Graphen \(G_f\) von \(f\).

    Abbildung zu Teilaufgabe 1a

    Zeigen Sie, dass \(D_f = \mathbb R \, \backslash \, \{-5;5\}\) gilt und dass \(G_f\) symmetrisch bezüglich des Koordinatenursprungs ist. Geben Sie die Nullstelle von \(f\) sowie die Gleichungen der drei Asymptoten von \(G_f\) an.

    (5 BE)

  • Weisen Sie nach, dass die Steigung von \(G_f\) in jedem Punkt des Graphen negativ ist. Berechnen Sie die Größe des Winkels, unter dem \(G_f\) die \(x\)-Achse schneidet.

    (4 BE)

  • Skizzieren Sie in der Abbildung den darin fehlenden Teil von \(G_f\) unter Berücksichtigung der bisherigen Ergebnisse.

    (3 BE)

  • Die Funktion \(f^* \colon\mapsto f(x)\) mit Definitionsbereich \(]5;+\infty[\) unterscheidet sich von der Funktion \(f\) nur hinsichtlich des Definitionsbereichs. Begründen Sie, dass die Funktion \(f\) nicht umkehrbar ist, die Funktion \(f^*\) dagegen schon. Zeichnen Sie den Graphen der Umkehrfunktion von \(f^*\) in die Abbildung ein.

    (4 BE)

  • Der Graph von \(f\), die \(x\)-Achse sowie die Geraden mit den Gleichungen \(x = 10\) und \(x = s\) mit \(s > 10\) schließen ein Flächenstück mit dem Inhalt \(A(s)\) ein. Bestimmen Sie \(A(s)\).

    (Ergebnis: \(\displaystyle A(s) = 10 \cdot \ln{\frac{s^2 - 25}{75}}\))

    (5 BE)

  • Ein Motorboot fährt mit konstanter Motorleistung auf einem Fluss eine Strecke der Länge 10 km zuerst flussabwärts und unmittelbar anschließend flussaufwärts zum Ausgangspunkt zurück. Mit der Eigengeschwindigkeit des Motorboots wird der Betrag der Geschwindigkeit bezeichnet, mit der sich das Boot bei dieser Motorleistung auf einem stehenden Gewässer bewegen würde.

    Im Folgenden soll modellhaft davon ausgegangen werden, dass die Eigengeschwindigkeit des Boots während der Fahrt konstant ist und das Wasser im Fluss mit der konstanten Geschwindigkeit 5 \(\frac{\sf{km}}{\sf{h}}\) fließt. Die für das Wendemanöver erforderliche Zeit wird vernachlässigt.

    Die Gesamtfahrzeit in Stunden, die das Boot für Hinfahrt und Rückfahrt insgesamt benötigt, wird im Modell für \(x > 5\) durch den Term \(\displaystyle t(x) = \frac{10}{x + 5} + \frac{10}{x - 5}\) angegeben. Dabei ist \(x\) die Eigengeschwindigkeit des Boots in \(\frac{\sf{km}}{\sf{h}}\).

    Bestimmen Sie auf der Grundlage des Modells für eine Fahrt mit einer Eigengeschwindigkeit von 10 \(\frac{\sf{km}}{\sf{h}}\) und für eine Fahrt mit einer Eigengeschwindigkeit von 20 \(\frac{\sf{km}}{\sf{h}}\) jeweils die Gesamtfahrzeit in Minuten.

    (2 BE)