Prüfungsteil B

  • Um den Flächeninhalt der Vorderseite der Dachgaube zu ermitteln, wird eine Stammfunktion \(F\) von \(f\) betrachtet.

    Einer der Graphen I, II und III ist der Graph von \(F\). Begründen Sie, dass dies Graph I ist, indem Sie jeweils einen Grund dafür angeben, dass Graph II und Graph III nicht infrage kommen.

    Graphen I Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Graphen II Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Graphen III Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    (2 BE) 

  • Bestimmen Sie nun mithilfe des Graphen von \(\boldsymbol{F}\) aus Aufgabe 2c den Flächeninhalt der gesamten Vorderseite der Dachgaube (einschließlich des Fensters).

    Beschreiben Sie unter Einbeziehung dieses Flächeninhalts die wesentlichen Schritte eines Lösungswegs, mit dem der Wert von \(a\) rechnerisch so bestimmt werden könnte, dass bei einer Fensterhöhe von 1,50 m der Teil der Vorderseite der Dachgaube, der in Abbildung 3 schraffiert dargestellt ist, den Flächeninhalt 6 m2 hat.

    (5 BE) 

  • Um einen Näherungswert für die Länge der oberen Profillinie der Vorderseite der Dachgaube berechnen zu können, wird \(G_f\) im Bereich \(-4 \leq x \leq 4\) durch vier Kreisbögen angenähert, die nahtlos ineinander übergehen und zueinander kongruent sind. Einer dieser Kreisbögen erstreckt sich im Bereich \(0 \leq x \leq 2\) und ist Teil des Kreises mit Mittelpunkt \(M(0|-1)\) und Radius 3. Berechnen Sie den Mittelpunktswinkel des zu diesem Kreisbogen gehörenden Kreissektors und ermitteln Sie damit den gesuchten Näherungswert.

    (5 BE) 

  • Auf der Autobahn entsteht morgens an einer Baustelle häufig ein Stau.
    An einem bestimmten Tag entsteht der Stau um 06:00 Uhr und löst sich bis 10:00 Uhr vollständig auf. Für diesen Tag kann die momentane Änderungsrate der Staulänge mithilfe der in \(\mathbb R\) definierten Funktion \(f\) mit
    \(f(x) = x \cdot (8 - 5x) \cdot \left( 1 - \frac{x}{4} \right)^2 = -\frac{5}{16}x^4 + 3x^3 - 9x^2 + 8x\)
    beschrieben werden. Dabei gibt \(x\) die nach 06:00 Uhr vergangene Zeit in Stunden und \(f(x)\) die momentane Änderungsrate der Staulänge in Kilometern pro Stunde an. Die Abbildung 1 zeigt den Graphen von \(f\) für \(0 \leq x \leq 4\).
    Für die erste Ableitungsfunktion von \(f\) gilt \(f'(x) = (5x^2-16x+8) \cdot \left( 1 - \frac{x}{4} \right)\).

    Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 1

    Nennen Sie die Zeitpunkte, zu denen die momentane Änderungsrate der Staulänge den Wert null hat, und begründen Sie anhand der Struktur des Funktionsterms von \(f\), dass es keine weitere solchen Zeitpunkte gibt.

    (3 BE) 

  • Es gilt \(f(2) < 0\). Geben Sie die Bedeutung dieser Tatsache im Sachzusammenhang an.

    (1 BE) 

  • Bestimmen Sie rechnerisch den Zeitpunkt, zu dem die Staulänge am stärksten zunimmt.

    (5 BE) 

  • Das Glücksrad wird zweimal gedreht. Untersuchen Sie, ob die Ereignisse \(C\) und \(D\) stochastisch unabhängig sind.

    \(C\): „Die Summe der erzielten Zahlen ist kleiner als 4."

    \(D\): „Das Produkt der erzielten Zahlen ist 2 oder 3."

    (5 BE) 

  • Im Sachzusammenhang ist neben der Funktion \(f\) die in \(\mathbb R\) definierte Funktion \(s\) mit \(s(x) = \left( \frac{x}{4} \right)^2 \cdot (4 - x)^3 = -\frac{1}{16}x^5 + \frac{3}{4}x^4 - 3x^3 + 4x^2\) von Bedeutung.

    Begründen Sie, dass die folgende Aussage richtig ist:

    Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion \(s\) angegeben werden.

    Bestätigen Sie rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat.

    (4 BE) 

  • Berechnen Sie die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimmen Sie für diesen Zeitraum die mittlere Änderungsrate der Staulänge.

    (3 BE) 

  • Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 2 gezeigten Graphen dargestellt. Dabei ist \(x\) die nach 06:00 Uhr vergangene Zeit in Stunden und \(y\) die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.

    Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 2

    Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markieren Sie diesen Zeitpunkt in der Abbildung 2, begründen Sie Ihre Markierung und veranschaulichen Sie Ihre Begründung in der Abbildung 2.

    (3 BE) 

  • Betrachtet wird die Schar der in \(\mathbb R\) definierten Funktionen \(h_k\) mit \(h_k(x) = (x - 3)^k + 1\) und \(k \in \{1;2;3;\dots\}\).

    Geben Sie in Abhängigkeit von \(k\) das Verhalten von \(h_k\) für \(x \to -\infty\) an und begründen Sie Ihre Angabe.

    (3 BE) 

  • Ermitteln Sie die Koordinaten der Punkte, die alle Graphen der Schar gemeinsam haben.

    (3 BE) 

  • Die erste Ableitungsfunktion von \(h_k\) wird mit \(h'_k\) bezeichnet. Beurteilen Sie die folgende Aussage:

    Es gibt genau einen Wert von \(k\), für den der Graph von \(h'_k\) Tangente an den Graphen von \(h_k\) ist.

    (6 BE) 

  • Die Graphen von \(h_k\) und \(h'_k\) werden in der Abbildung 3 für \(k = 4\) beispielhaft für gerade Werte von \(k\) gezeigt, in der Abbildung 4 für \(k = 5\) beispielhaft für ungerade Werte von \(k\). Für \(k \geq 4\) werden die Punkte \(P(4|h_k(4))\), \(Q(4|h'_k(4))\), \(R(2|h_k(2))\) und \(S(2|h'_k(2))\) betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks.

    Abbildung 3 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 3

    Abbildung 4 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2023Abb. 4

    Begründen Sie dass jedes dieser Vierecke ein Trapez ist, und zeigen Sie, dass die folgende Aussage richtig ist:

    Für jeden geraden Wert von \(k\) mit \(k \geq 4\) stimmen der Flächeninhalt des Trapezes für \(k\) und der Flächeninhalt des Trapezes für \(k + 1\) überein.

    (7 BE) 

  • Tatsächlich ist der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten unterschiedlich; am Standort B besitzt nur die Hälfte der Beschäftigten ein Jobticket. Berechnen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers, der ein Jobticket besitzt, am Standort A arbeitet.

    (3 BE) 

  • Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\displaystyle \sum \limits_{k\,=\,0}^{25}\binom{200}{k} \cdot 0{,}1^k \cdot (1 - 0{,}1)^{200 - k}\) berechnet werden kann.

    (3 BE) 

  • Die Zufallsgröße \(X\) beschreibt die Anzahl der Pkw mit Elektromotor unter den ausgewählten Fahrzeugen. Berechnen Sie den Erwartungswert und die Standardabweichung von \(X\).

    (2 BE) 

  • Für einen bestimmten Wert \(n \in \{1;2;3;\dots\}\) werden für \(p \in \;]0;1[\) die binomialverteilten Zufallsgrößen \(Z_p\) mit den Parametern \(n\) und \(p\) betrachtet. Weisen Sie nach, dass unter diesen Zufallsgrößen diejenige mit \(p = 0{,}5\) die größte Varianz hat.

    (3 BE) 

  • Aus den neu zugelassenen Pkw mit Elektromotor werden 40 Fahrzeuge zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau zehn Plug-in-Hybride befinden.

    (3 BE) 

  • In Deutschland waren zu Beginn des Jahres 2021 etwa 320 000 Pkw mit rein elektrischem Antrieb und 280 000 Plug-in-Hybride zugelassen, also insgesamt 600 000 Pkw mit Elektromotor. Der Anteil der Pkw mit Elektromotor am Gesamtbestand aller in Deutschland zugelassenen Pkw betrug rund 1,2 %. Bestimmen Sie die Anzahl der Pkw, die aus diesem Gesamtbestand mindestens zufällig ausgewählt werden müssen, damit mit einer Wahrscheinlichkeit von mehr als 97 % mindestens ein Pkw mit rein elektrischem Antrieb darunter ist.

    (5 BE)